
XOR Branching
XOR branching is always tied to .conditions These conditions are defined in the element and Event
checked during process execution. The result determines which of the predetermined process branches

. Theis chosen XOR branching recognizes two results per condition: the defined condition is Either
fulfilled it is not fulfilled.or

Conditions are defined in the element Event, therefore pay attention to the following :during modeling

The
XOR
conn
ector
follo
ws a
Func

.tion
The
conn
ector
is
follo
wed
by E
vents
.
The
condi
tions
must
be
save
d in E
vent
elem
ents.

Defining Conditions
The procurement process requires employees to complete aACME in order to Procurement Request
react to a demand.

On this Page:

Defining Conditions
Conditions: Syntax
Conditons:
Special Cases

Logical Operators

Related Pages:

AND Branching
EPC Elements

Connectors
Event

Modeling Conventions
Executing Processes

Possible
Values: Value
and Label

Service
Procurement
Process

Related Documentation:

BPaaS Entwicklerhandbuch
(German)

Procurement
Process

If the conditions were not defined correctly, then the process is stopped and the
announcement is displayed.Error during model execution!

In order to prevent an EPC from being ineffective always verify and when event counterevent
designating constraints.

 Example: A form offers the answers nd . In the process, yes-answers shall follow a YES a NO
different path than no-answers. Therefore it has to be verified which of both paths needs to be
followed after the form has been saved. Instead of checking if was specified, or YES NO
check if was entered. This enables you to also pick up cases where neither or YES NOT YES
answer was specified.

The counterevent to YES is not NO, but NOT YES!

https://doc.scheer-pas.com/display/BPAASEN/AND+Branching
https://doc.scheer-pas.com/display/BPAASEN/EPC+Elements
https://doc.scheer-pas.com/display/BPAASEN/Connectors
https://doc.scheer-pas.com/display/BPAASEN/Event
https://doc.scheer-pas.com/display/BPAASEN/Modeling+Conventions
https://doc.scheer-pas.com/display/BPAASEN/Executing+Processes
https://doc.scheer-pas.com/display/BPAASEN/Possible+Values%3A+Value+and+Label
https://doc.scheer-pas.com/display/BPAASEN/Possible+Values%3A+Value+and+Label
https://doc.scheer-pas.com/display/BPAASEN/Possible+Values%3A+Value+and+Label
https://doc.scheer-pas.com/display/BPAASEN/Service
https://doc.scheer-pas.com/display/BPAASEN/Procurement+Process
https://doc.scheer-pas.com/display/BPAASEN/Procurement+Process
https://doc.scheer-pas.com/display/BPAASDEV
https://doc.scheer-pas.com/display/BPAASEN/Procurement+Process
https://doc.scheer-pas.com/display/BPAASEN/Procurement+Process

Accordin
g to the
guideline
s of ACM

tE Corp.,
he
request
can be
immediat
ely
converted
into an
order if
the order
value
does not
exceed
50 Dollar.

If the
order
contains
items
valued
above 50
Dollar
total,
then the
demand
has to be
verified
prior to
ordering.
The
employee
enters
the
desired
items
into a Pro
curement
Request,

 then an O
rder
Value is
determin
ed.

The amount in determines the next process stepsOrder Value :

If the demand remains in the credit limit (<= 50), the process continues to the process step Sendi
. ng confirmation

If the demand exceeds 50 Dollar, the event Credit limit exceeded (>50) comes into effect,
triggering the next process step Informing Approver.

 branch following the XOR connector requires its own event. In the element option you have to Each
enter the corresponding condition referring to and verifying the field's value in the data container.

Verification Credit limit adhered

Verification Credit limit exceeded

Designers can assign a to form fields, that varies from the field's actual name Field Name in Container
(see page for further details). However make sure to use the The Container Principle Field Name in

 when defining the condition, since during the event verification the value in the data container Container
will be used.

 The is assigned to the input field Example: Field Name in Container procurementValue Order Value

Accordingly the conditions refer to , the Field Name in Container:procurementValue

The conditions need to be defined to cover events. In our example is not only verified if the all possible
Order Value is larger or smaller than 50 $, but also covers the possibility that the amount equals 50 $.
Therefore all possible values are covered.

Expert Advice

Use the to generate variables for the event verification. Button Function After Click

 Creation of variable Example: approved

https://doc.scheer-pas.com/display/BPAASEN/The+Container+Principle
https://doc.scheer-pas.com/display/BPAASEN/Button

Inser
t the
butto
ns R
eject
and
Appr

 ove
to
your

.form

Set
the R
eject
butto
n's
varia

 ble a
ppro

 ved t
o ' 'no
in
the F
uncti
on:
After

 Click
:

c
o
n
t
a
i
n
e
r
.
s
a
v
e
(
'
a
p
p
r
o
v
e
d
'
,
'
n
o
'
);

Conditions: Syntax

In a condition verification are used. The placeholder needs to be encased in single Logical Operators
quotation marks. The placeholder is the value to be referenced (= or of Name Field Name in Container
the form field). String comparisons are always encased in double quotation marks.

Example:

The
functi
on
of
butto
n Ap
prov

is e
used
to
set
appr

 oved
"to y
":es

c
o
n
t
a
i
n
e
r
.
s
a
v
e
(
'
a
p
p
r
o
v
e
d
'
,
'
y
e
s
'
);

Now check in the events for the variable : approved

Syntax Meaning

 'Order Total' <= 150 The condition verifies if the field's value is smaller or equal to 150.Order Total

 'Name' === "Meier" The condition verifies if the entry in field contains the string Meier.Name

Conditons: Special Cases

Some form fields have special characteristics, that need to be considered when checking conditions.

Drop-down Field

The values of a Drop-down Field
are always saved as value pair val

/ . When checking the ue label
values of a Drop-down Field, you
always need to specify if you are
looking for the value entry or the
label entry.

Additional informations can be
found on page Possible Values:

.Value and Label

Checkbox

A Checkbox can only assume two
values: and (boolean true false
values):

If the checkbox is activated,
then the value saved in the
container is .true
If it remains unchecked, then
the value in the data
container is .false

Check for the Example: MyBox
checkbox' value

Checkbox
 MyBox

was
activated

Checkbox
was MyBox

not activated

'MyBox' ===
true

'MyBox' ===
false

'MyBox' !==
false

'MyBox' !== true

Radio Button

Analog to the Drop-down Field,
the value of a Radio Button is also
saved as value pair / . value label
When checking for the values of a
Radio Button you therefore always
need to specify whether you are
searching for the value or the label.

Additional informations can be
found on page Possible Values:

.Value and Label

Expert Advice

You may also insert for the condition verification. In this case JavaScript conform container.get()
statements need to be inserted.

https://doc.scheer-pas.com/display/BPAASEN/Possible+Values%3A+Value+and+Label
https://doc.scheer-pas.com/display/BPAASEN/Possible+Values%3A+Value+and+Label
https://doc.scheer-pas.com/display/BPAASEN/Possible+Values%3A+Value+and+Label
https://doc.scheer-pas.com/display/BPAASEN/Possible+Values%3A+Value+and+Label

Logical Operators
Find an overview of commonly used logical operators below:

Operator Meaning

== Equality operator

!= Inequality operator

=== equality operatorStrict

!== inequality operatorStrict

< Smaller-than-operator

<= Smaller-than-or-equal-operator

> Larger-than-operator

>= Larger-than-or-equal-operator

&& Logical AND-operator. All connected logical expressions have to be fulfilled in order to
comply with conditions.

|| Logical OR-operator. At least one of the connected logical expressions has to be fulfilled
in order to comply with conditions.

! Logical NOT-operator. Reverses the logical value.

Generally always use the (in-)equality operator. This is to ensure that two operands strict
match not only in value but also by type.

	XOR Branching

