
1.
2.
3.

Project Organization
When starting with a new project, you should give some thoughts to the project organization. To set up a
change-friendly, clear project organization, you should take the following questions into account:

Builder project - when to use a single Builder project, when to split into multiple projects?
Service models - where to log changes?
Service model - how to organize external specifications, such as shared data structures,
libraries and modules?

When to Use a Single Builder Project, When to Split
into Multiple
Splitting-up the project should base on logical conditions, but not on project team organization. This
means: Do not create one Builder project for every team member, but e.g. one for every customer
organization unit. The count of models in one Builder project is not limited technically, but more by logical
reasons. At a certain amount of models in a project, it will be difficult to stay in top of things.

Additionally we recommend to collect all libraries and modules in one Builder project. These libraries and
modules then can easily be reused in other Builder projects. The initial work on these libraries and
modules still can be done in a specific Build project. If the library/module is ready, move it to the libraries
and modules project.

When to use Libraries, Modules or (Base) Services

This is actually an architectural decision depending on the architecture of the installation site (e.g. zone
concept). In general, Base Services in a SOA context can be web services or libraries

Implementation
Type

Use, when

Base Services
the service implements a communication between nodes or zones
performance is not a big issue
a third party wants to use the functionality, too, via web service
complex interfaces need to be simplified

Advantage: If the backend interface changes, Base Service interface does not
necessarily need to be changed.

 If the Base Service Interface changes, all consuments must change, Drawback:
too.

Module
you need the same implementation in several xUML services with different
name and ports
 you just want to share data structures or packages and no interfaces
(operations) are required

Library
you want to encapsulate an implementation/special functionality of an
operation
you want to encapsulate backend functionality (only possible, if it is not
used by a third party, means: no frontend (e.g. SOAP)

Advantages:

Better version control through logic version within library model (component
diagram)
Better control, when a changed library is deployed within a service

When to Set a New Logical Library Version Number

The library version number can be set in the component diagram. Change the library version number
after implementing a new requirement, that will be deployed and don't forget to document the change as
described in further below.Where to Log Changes

Use major and minor versions:

Change the major version, if the interface has changed,.
Change the minor version for each implemented new requirement.

On this Page:

When to Use a Single
Builder Project, When to
Split into Multiple

When to use
Libraries, Modules
or (Base) Services
When to Set a
New Logical
Library Version
Number
Service Oriented
Architecture

Where to Log Changes
Using a Version
Control Tool

Which
Files to
Put
Under
Version
Control

Port Organization
/ Service Inventory

How to Organize Shared
Data Structures, Libraries
and Modules

Related Pages:

Project Organization
Naming Conventions and
Containment Tree
Organisation
Model Documentation
Settings
Mappings
Sub-activities
Logging
Error Handling

https://doc.scheer-pas.com/display/BRIDGE/Naming+Conventions+and+Containment+Tree+Organisation
https://doc.scheer-pas.com/display/BRIDGE/Naming+Conventions+and+Containment+Tree+Organisation
https://doc.scheer-pas.com/display/BRIDGE/Naming+Conventions+and+Containment+Tree+Organisation
https://doc.scheer-pas.com/display/BRIDGE/Model+Documentation
https://doc.scheer-pas.com/display/BRIDGE/Settings
https://doc.scheer-pas.com/display/BRIDGE/Mappings
https://doc.scheer-pas.com/display/BRIDGE/Subactivities
https://doc.scheer-pas.com/display/BRIDGE/Logging
https://doc.scheer-pas.com/display/BRIDGE/Error+Handling

1.
2.
3.

Service Oriented Architecture

Split your service into base services or libraries (also see When to use Libraries, Modules or (Base)
 above), e.g. to abstract backends.Services

This is useful for:

Zone transfer (infrastructure for communication between secure zone and dmz zone, e.g.SOAP
over https
Concerning libraries: Changes have to be compiled into (base) services only if the signature
changes (make generic interfaces).

Examples:

Salesforce-Base service
database abstraction
FTP service (dispatcher)

Where to Log Changes

So, we recommend to track changes in a change log (e.g. in a note) on the use case diagram of the
service model. This especially helps, if the source is located in multiple places, e.g. at the customer site a

 locally at the site of the project team.nd

Such a change log should contain at least the following information:

the date
the author of the edit
the model version
what has been done
We also recommended to add a comment, if a new version of a library is used.

The Builder templates provide an default change log on the use case diagram that you simply can fill in.

Copy the lines from the change log and add them also to the check-in comment of your versioning
system.

Using a Version Control Tool

Using a version control tool to control changes of models needs some discipline. With SVN, the following
approach has been proved useful:

Get the current version of the model.
Lock the model for concurrent edits.
Check in when work is done.

When two ore more team members are working on the same service, it may be helpful to split the service
into modules that can be worked on independently (e.g. mapping module, ...).

Which Files to Put Under Version Control

You should control the following files by a version control system:

all files from following folders:
uml and imports
libs
jarfiles
resource

the file, but not (which contains temporary data like "last .e2ebuilder .$e2ebuilder.workspace
project saved" and so on)
concerning testing:

Create a separate Builder project that contains your tests, especially for regression
tests, and put that under version control (files and folders see below)
folder testcase
Best is, to introduce a QA server with the Analyzer only installed.

If you need to rename or remove a folder that is under version control, you can

zip the old folder and check in the ZIP file.

The truth of what has been changed is only in the model!

remove the old ones from your version control system and check in the new (if applicable)

Depending on your version control system, you will probably lose history then.

Port Organization / Service Inventory

We recommend to keep a service inventory in a central space, e.g. Confluence or any other wiki,
operation manual (Word) or Excel list.

Make an inventory of:

ports (control and service ports)
service names
service category (for E2E Bridge)
short description (overview)
model names

How to Organize Shared Data Structures, Libraries
and Modules
Collect all specification sources (e.g. XSD, DDL, WSDL, CSV) in particular sub-folders of a folder specifi

. Locate this folder inside the Builder project, if the specifications are specific to this project - cations
locate it outside the Builder projects, if the specifications are shared by multiple projects.

After being imported to a Builder project, these sources will reside in the folder of this uml/imports
specific Builder project. If sources are used in multiple Builder projects, you have to keep the import
folders redundantly for each project.

You should document dependencies of imported elements in the descriptive use case diagram.

Element Remark

Library
The source of the library should reside in an own Builder project.
You can also use the library dependency dialog from the menu of the E2E Tools
Compiler to get an overview on library dependencies.

Module
The source of the module resides either in an own Builder project (if the module can
be used in multiple projects), or in the Builder project the module has been designed
for.
Use revision tag from your version control to distinct the module versions.

	Project Organization

