
Implementing Additional Calculations MD18

In the last step, you are going to summarize the prices to form a price total and calculate the delivery
charge, assuming an order quantity of one.

This
additional
information
you defined to
be stored in
class SearchR

.esult

Objects of
class SearchR

 also esult
contain zero
to infinite
objects of
class Product

 in Extended
array matchin

 gProducts
defined on the
association
end.

As an output
of the iteration
you
implemented
in the last
chapter, you
got the array e
xtendedProd

 ucts
containing
objects of
type Products

.Extended

All filtered
products with
converted
prices are
stored in this
array.

Now you are
going to set
this array into
the output
object.

Below Calcula
te CHF Prices
draw an
action node S
et Matching
Products in

 and Output
connect it to
the control
flow.

Components

https://doc.scheer-pas.com/display/ACADEMY/Components+Lesson+3.2+MD18
https://doc.scheer-pas.com/display/ACADEMY/Components+Lesson+3.2+MD18

Before
calculating
the prices,
you already
defined a
buffer node se

 of archResult
type SearchR

 and esult
stored the
exchangeRate
in this object.
You could
connect this
buffer node to
Set Matching
Products in

 now. Output
But for
reasons of
comprehensibi
lity, you will
copy the
buffer node
again.

Select the
buffer node se

 in archResult
the
containment
tree and drop
near the left
diagram
border.

Draw object
flows from the
buffer node
and the array
extendedPro

 to the ducts
action node.

Open the
Action Script
Editor of Set
Matching
Products to

 and Output
enter the
following
statement:

set
searchRe
sult.
matching
Products
=
extended
Products;

The array mat
chingProducts
you defined in
the class
diagram on
the
association
end belonging
to class Searc

 hResult
receives the
content of
array extende

, dProducts
containing all
filtered
products with
converted
prices.

Click .|OK

Draw an
action node
with control
flow below Set
Matching
Products in

 and Output
assign the
name Calcula

.te Sums

Draw an
object flow
from searchR

 to the esult
newly created
action node,
as you need it
as input.

Open the Action Script editor and insert the two following set statements:

set searchResult.totalAmountCHF = reduce searchResult.matchingProducts
using element.priceCHF + nextElement.priceCHF if single use element.
priceCHF;
set searchResult.totalAmountUSD = reduce searchResult.matchingProducts
using element.priceUSD + nextElement.priceUSD if single use element.
priceUSD;

In this action script, you combine a statement with a operation. The operation set reduce reduce
applies to arrays and allows you to reduce the array having elements of complex types to a scalar value.
Therefore, an expression is recursively applied to each array element () and its next element (element ne

).xtElement

set searchResult.totalAmountCHF The total of the
reduce operation
is stored in search
Result.

.totalAmountCHF

reduce searchResult.matchingProducts The reduce
operation is
applied to the
array searchResul
t.
matchingProducts
.

using element.priceCHF + nextElement.priceCHF For calculating the
sum, you must
use the currently
evaluated array
element () element
and its next
neighbor (nextEle

).ment

The attribute price
 of CHF element

and nextElement
are added up and
the result is stored
in searchResult.

.totalAmountCHF

if single use element.priceCHF; This is a
mandatory
extension and
allows to define
the action for an
array containing
only one single
element.

If there is only one
matching product,
the total amount
equals to the price
of this product.

For more information about the reduce operation refer to the .xUML Services Reference Guide

Finally, you are going to calculate the delivery charge.

Draw an
action node
with control
flow below Cal

 culate Sums
and assign
the name Calc
ulate
Delivery

.Charge

Draw an
object flow
from searchR

 to the esult
newly created
action node,
as you need it
as input.

Open the Action Script Editor and insert the following statements:

local noChargeAmount = setting("No charge at amount of", 50.0);
local deliveryCharge = setting("Delivery charge", 10.0);

set searchResult.deliveryCharge = if searchResult.totalAmountCHF >=
noChargeAmount then 0.0 else deliveryCharge;

For the delivery charge calculations, you need the delivery charge amount itself (), the deliveryCharge
amount starting from which the delivery is free () and the total of the order you just noChargeAmount
calculated ().searchResult.totalAmountCHF

https://doc.scheer-pas.com/display/BRIDGE/reduce

local noChargeAmount = setting("No charge at amount of",
50.0);
local deliveryCharge = setting("Delivery charge", 10.0);

noChargeAmount
and deliveryChar

 are defined as ge
local variables
within the action
script.

Remember that in lesson 2 you already learned how to use the setting macro function. With the setting
macro literals can be stored global to an xUML service. In the Bridge context, it is possible to define
name / value pairs that are configurable from the E2E Embedded Runtime and the E2E Bridge.

The setting macro function also can be combined with a local variable definition.

set searchResult.deliveryCharge = The result of the
calculation is
stored in searchRe
sult.

.deliveryCharge

if searchResult.totalAmountCHF >= noChargeAmount The set statement
can be combined
with a condition.
If the order value
exceeds the limit
defined in noChar

 ...geAmount

then 0.0 ... then no delivery
charge is asked ...
Remember to use
the format as 0.0 s
earchResult.

 is deliveryCharge
of type float.

else deliveryCharge; ... in all other
cases the delivery
charge defined by
the setting is
assigned.

Complete the diagram by drawing the activity final node and add the parameter on the searchResult
right border of the diagram pane.

Assign the
name to End
the activity
final node.

Drag and
drop the
parameter sea

 rchResult
onto the right
diagram
border and
connect it to C
alculate
Delivery

.Charge

Now, all calculations are implemented.

The package GetProductService
is not needed anymore and can be
deleted. Leaving the package
would lead to compiler errors as
you changed the interface of the C

 in the second urrencyCalculator
iteration.

Save the UML model.

	Implementing Additional Calculations MD18

