Implementing Additional Calculations MD18

/ Sequences. / ‘Components

Compilation Testing

In the last step, you are going to summarize the prices to form a price total and calculate the delivery

charge, assuming an order quantity of one.

SearchResult

ProductExtended (+matchingProducts - + - <M contains . . .

+priceCHF : Float |0 *-

+deliveryCharge : Float
+exchangeRate : Float
+keywords : String

+itle : String
+otalAmountCHF : Float
+totalAmountUSD : Float

=EZEAays
extendedProducts ; Array
{farrayElement = ProductExtended}

Adionscripts
Calculate CHE Prices

{scrpt = "create extendedProduct

S8t extondedProduct category = product category;
set extendedProductink = procuctnk:

Jlr = R
et extendecProduct e = produc e
set extendedProducttype = product type;

Set Matching Products in Output

This

additional
information
you defined to
be stored in
class SearchR
esult.

Objects of
class SearchR
esult also
contain zero
to infinite
objects of
class Product
Extended in
array matchin
gProducts
defined on the
association
end.

As an output
of the iteration
you
implemented
in the last
chapter, you
got the array e
xtendedProd
ucts
containing
objects of
type Products
Extended.

All filtered
products with
converted
prices are
stored in this
array.

Now you are
going to set
this array into
the output
object.

Below Calcula
te CHF Prices
draw an

action node S
et Matching
Products in
Output and
connect it to
the control
flow.

Components


https://doc.scheer-pas.com/display/ACADEMY/Components+Lesson+3.2+MD18
https://doc.scheer-pas.com/display/ACADEMY/Components+Lesson+3.2+MD18

Before

- _
o calculating
(<Herate>> ¢
GTE the prices,
Cheais G e you already
(st ="t otencProt defined a

set extendecProduct category = product category

|
| ‘
| ‘
| ‘
| l
! |
| Fe e e ; buffer node se
} ; archResult of
| ‘
| ‘
| ‘
| ‘
| ‘

et extendecProduct seller = product seller
set extendedProduct e = product fle;
Set extendedProduct type = product type;

S e Proau OIS0 - ot AU
type SearchR

esult and
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, S stored the
: exchangeRate
S s o - in this object.
ai.—, Element = ProductExtended } YOU COUId

connect this
buffer node to
Set Matching
Products in
Output now.

v But for

reasons of
comprehensibi
lity, you will
copy the
buffer node
again.

Select the
buffer node se
archResult in
the
containment
tree and drop
near the left
diagram
border.

Draw object
flows from the
buffer node
and the array
extendedPro
ducts to the
action node.



Open the

Action Script
File Edit View Code Global Ops Editor of Set

Set Matching Products in Output Matching
Products to

Action Script Output and
enter the
following
statement:

set searchResult.matchingProducts = extendedPrnducts:|

set

sear chRe
| : sult.

|® @ [[]Match Case [ ] Repeats mat chi ng

Product s
Lok Canl | -

ext ended
Product s;

The array mat
chingProducts
you defined in
the class
diagram on
the
association
end belonging
to class Searc
hResult
receives the
content of
array extende
dProducts,
containing all
filtered
products with
converted
prices.

Click OK.|

= cTranstormations

[PR—
2

AdionSaipls
Calculate CHF Prices
{script = create extendsdProduct;

set extendedProduct category = product category;

set extendedProduct ik = producLlink.

Sat extendadProduct manufacturer = product manufacturer;
et extendscProductpriceUSD = product priceUSD;

sat extendadProduct fte = product ;.
set extendscProduct ype = product type:

ctonserts E2EATars
cceniraBufers Set Matching Products in Output extendedProducts : Aray
searchResult: SearchResult {scrit = ) arayEloment = ProcuctExtendea)




= ctranstornatons
{select = TiterecProducts products|

<Sleraive>>

cActonScripts
Calculate CHF Prices
{script = "create extendedProduc

set extendecProduct category = product category
set extendedProductink = product ink.

set extendecProduct priceUSD = product piceUSD;
et extendecProduct seller = product seller

set extendedProduct e = product e

set extendedProducttype = procuct e

|
|
|
|
|
|
|
|| setextendecProduct manutacturer = product manutacturer
|
|
|
|
|
|
|

auim,

‘extendedProduct

E2EATan

AdionSaipts ] 7
<centraBuftens Set atching Products in Output T Te Eoe
searchResult:SearchResult - .
[ fscpt= ) | - )

Open the Action Script editor and insert the two following set statements:

Draw an
action node
with control
flow below Set
Matching
Products in
Output and
assign the
name Calcula
te Sums.

Draw an
object flow
from searchR
esult to the
newly created
action node,
as you need it
as input.

set searchResul t.total Amount CHF = reduce searchResul t. nat chi ngProducts
using el ement. priceCHF + nextEl ement. priceCHF if single use elenent.

pri ceCHF;

set searchResult.total Amount USD = reduce searchResul t. mat chi ngProducts
using el enent. priceUSD + nextEl enent.priceUSD if single use el enent.

pri ceUSD;

In this action script, you combine a set statement with a r educe operation. The r educe operation
applies to arrays and allows you to reduce the array having elements of complex types to a scalar value.
Therefore, an expression is recursively applied to each array element (el ement ) and its next element (ne

xt El enent).

set searchResul t.total Amount CHF

reduce searchResul t. mat chi ngProducts

using el enent. priceCHF + next El enent. pri ceCHF

The total of the
reduce operation
is stored in search
Result.
totalAmountCHF.

The reduce
operation is

applied to the

array searchResul
t.
matchingProducts

For calculating the
sum, you must
use the currently
evaluated array
element (element)
and its next
neighbor (nextEle
ment).

The attribute price
CHF of element
and nextElement
are added up and
the result is stored
in searchResult.
totalAmountCHF.



if single use el enent.priceCHF; Thisis a
mandatory
extension and
allows to define
the action for an
array containing
only one single
element.

If there is only one
matching product,
the total amount
equals to the price
of this product.

For more information about the reduce operation refer to the xUML Services Reference Guide.

] «<ActionScripts e
| Calcuate CHE Prices |
| {script = “create extendedProduct; {
I | set extendedProduct category = product.category; |
| | set extendedProduct ik = product ink {
1| St extencecprocuct maratacurer = srocuct maniacirer |

set oxtandcProduct rceUSD = rocuet prceUSD; |
1| set extendeaProduct seller = product seller,
1| se entendecproduct e - product e i
| | set extendecProduct type = product type; |
i i
4]
i i
I i
i o i
““““““““““ \["""""""‘ I e decrroduct
ActionScripts <E2EAay
oo Set Matching Products in Output extendedProducts: Array
- {script =" 3 l{arrayElement = ProductExtended }
oS
Catcuate Sums
it =
]

Finally, you are going to calculate the delivery charge.

| coumacpcs [ Draw an
! ot ot st ‘ action node
| S 1 with control
| S ot im0 pons |
1| St tendacrodc st prodcsote | flow below Cal
|| set extendedProduct tile = product ttle; |
: ‘set extendedProduct type = product type; : Culate Sums
l | and assign
[} |
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o the name Calc
£ ulate
e e I Delivery
sarcmoat:sorcnostt | 7 (s ‘ , Charge.
Sy Draw an
= :
e : : object flow
) from searchR
. . . esult to the
o) newly created
action node,
as you need it
. . as input.

Open the Action Script Editor and insert the following statements:

l ocal noChargeAnount = setting("No charge at anmopunt of", 50.0);
local deliveryCharge = setting("Delivery charge", 10.0);

set searchResult.deliveryCharge = if searchResult.total Ambunt CHF >=
noChar geAnount then 0.0 el se deliveryCharge;

For the delivery charge calculations, you need the delivery charge amount itself (deliveryCharge), the
amount starting from which the delivery is free (noChargeAmount) and the total of the order you just
calculated (searchResult.totalAmountCHF).


https://doc.scheer-pas.com/display/BRIDGE/reduce

| ocal noChargeAmount = setting("No charge at anpunt of",

50.0);
| ocal deliveryCharge

setting("Delivery charge",

10.0);

noChargeAmount
and deliveryChar
ge are defined as
local variables
within the action
script.

Remember that in lesson 2 you already learned how to use the setting macro function. With the setting
macro literals can be stored global to an XUML service. In the Bridge context, it is possible to define
name / value pairs that are configurable from the E2E Embedded Runtime and the E2E Bridge.

The setting macro function also can be combined with a local variable definition.

set searchResul t. deliveryCharge

if searchResult.total Amount CHF >= noChar geAnpunt

then 0.0

el se deliveryCharge;

AdionSciipts
Calculate Sums

Jiscrpt=

AcionSarpts
Calculate Delivery Charge.

tscipt = Tocal noCharge ingNo charge at amount of, 50.0);
floca delveryCharge = setingC Delvery charge’, 10.0);

[noChargeAmount
then 0.0

[eise deiver,Charge:)

The result of the
calculation is
stored in searchRe
sult.
deliveryCharge.

The set statement
can be combined
with a condition.

If the order value
exceeds the limit
defined in noChar
geAmount ...

... then no delivery
charge is asked ...
Remember to use
the format 0.0 as s
earchResult.
deliveryCharge is
of type float.

... in all other
cases the delivery
charge defined by
the setting is
assigned.

Complete the diagram by drawing the activity final node and add the parameter searchResult on the

right border of the diagram pane.



J

edendacProduct

“AdionScits
Set Matching Products in Output

=
extendodproducts : Array
d
L

AckonSoipts
Calculate Sums
lscrpt =

<Adioncipts
Calculate Delivery Charge.

- focal deiveryCharge = seting('Deliery charge’, 10.0).

script = Tocal noChargeAmount = satingC'No charge at amourt o, 50.0)

[noChargeAmount
then 00

oo delveryCharge;)

asncasProouct

oSt
Set Matching Products in Output

B
searchResut: Searchesut [

==
extendedproducts : Aray
g |\

RSt
Calculate Sums

Calculate Defery Charge:

(sipt = ol noChargeAount = sting('No charge & amourt of, 50,05,
100,

InoChiargeAmount
nen 0.

i domenyCharge)

Now, all calculations are implemented.

Assign the
name End to
the activity
final node.

Drag and
drop the
parameter sea
rchResult
onto the right
diagram
border and
connectitto C
alculate
Delivery
Charge.



Contgioment @ B X
=Jpeglel o
E-E Data ~

--E Aliases

ﬁ Base Components [E2E Bridge Base.xml]

ﬁ Base Types [E2E Bridge Base.xml]

--E Component View

ﬁ ExchangeRateProvider.wsdl [ExchangeRateProvi

--El Overview

ﬁ Process Tracing [E2E Process Tracing.xmi]

E-Ex Services
R GetProductService
EE' Create Element ]
(- i
: Create D 3
& reate Diagram
Create Relation »
Specification Enter
B
GoTo L ¥

Open in Mew Tree

Related Elements J
Refactor 4
Tools J
Stereotype
Apply Profiles
Rename F2
A Copy Ctrl+C n.
< Copy URL b
B Paste Ctrl+V
¥ Cut Ctrl+ X
'ﬂ' Delete [, Delete
Find... -

A Ty ¥

Save n the UML model.

The package GetProductService
is not needed anymore and can be
deleted. Leaving the package
would lead to compiler errors as
you changed the interface of the C
urrencyCalculator in the second
iteration.



	Implementing Additional Calculations MD18

