
Testing with E2E Interactive Debugger Lesson1 MD18

The E2E Builder allows you to test all operations of a service at runtime in a model based fashion. You
can not only test and trace synchronous calls to a service but also asynchronous threads, for instance
such of time triggered events or asynchronous tasks of a persistent state engine.

The Builder provides different ways of how to test and trace a service. One possibility is to record the
execution path of a service call. The E2E Analyzer can request the recorded trace information from the
server and display the information graphically as UML sequence and activity diagrams. The execution
path and all runtime values can be analyzed by the user.
Another possibility is to debug the models at runtime. The E2E Interactive Debugger allows you to set
breakpoints in the activity diagrams of the UML models. You can step directly into each action of an
activity diagram within MagicDraw and examine the executed action script and runtime values of all
objects.

In lesson 1, the is introduced. The will be subject of lesson 2 E2E Interactive Debugger E2E Analyzer
and 3.

Running the Service
You will now test the Web service.
First of all, you will start the service, run a test case, and check the response the service returns. After
that, you will debug the service step by step.

On the left side of the EducationLe
 node the little gear wheel sson1

icon shows whether the service
has been started or not. E2E
Builder contains an Embedded
Runtime, to which the xUML
service repository gets deployed
automatically whenever you start
the service.

Currently, the gear wheel is gray , because the service is stopped. Click the deployment EducationLe
 with the right mouse button and select from the context menu.sson1 Run "EducationLesson1"

Another window opens that contains several tabs to administrate and test the service. This window is
called the Runtime window. We recommend placing the Runtime window as additional tab next to the
E2E Messages tab. If it has been placed at the bottom of the MagicDraw window, you should reorganize
the window layout.

First, make sure the message window is opened (shortcut - -). Ctrl Shift M
Then, click the tab labeled with as shown in the lesson1.EducationLesson1. EducationLesson1
picture below. Drag it...

E2E Development Server and E2E
Bridge

On this Page:

Running the Service
Running a Test Case
Debugging the Service

https://doc.scheer-pas.com/display/BRIDGE/Interactive+Debugger
https://doc.scheer-pas.com/display/BRIDGE/Analyzer+User+Guide
https://doc.scheer-pas.com/display/ACADEMY/E2E+Development+Server+and+E2E+Bridge+MD18
https://doc.scheer-pas.com/display/ACADEMY/E2E+Development+Server+and+E2E+Bridge+MD18
https://doc.scheer-pas.com/display/ACADEMY/E2E+Development+Server+and+E2E+Bridge+MD18

.. over the title bar of the message window and release the mouse button as soon as the message
window is surrounded by a blue border.

The message window and the window have been lesson1.EducationLesson1. EducationLesson1
merged. You can now drag & drop the merged window wherever you like, a blue frame indicates where it
can be fixed in the MagicDraw window:

The window layout is stored individually for each model.

The Runtime window contains six tabs: , , , , and Preferences Run Debug Remote Debug Test Cases WS
.DL

1.
2.
3.

In the tab, the settings of the service (particularly the settings defined in the model) Preferences
can be edited.
The tab serves to start and stop the service and to view the service log.Run
The and tab contain debugging functionality.Debug Remote Debug
In the tab, test cases can be specified and run.Test Cases
The tab contains the generatet WSDL to share the service.WSDL

You will use the tab as well as the tab in the following testing steps. For further Debug Test Cases
information on the Runtime window refer to the .BUILDER User's Guide

As you started the service, the tab has been opened. It shows all messages of the start up Run
procedure of the service. If the service start up has been successful, the last line reads Start up done.

In summary, the following tasks have been executed automatically after clicking in the Model Run
Compiler:

If the model had been changed, it would have been compiled as well.
The service composite has been deployed to the E2E Embedded Runtime.
The service has been started spawning a Bridge process.

The service is ready to process service SOAP requests. Using the Embedded Runtime, the service will
always be deployed to .localhost

Note, that the gear wheal in the
Model Compiler has turned green

, indicating that the service is
running.

Running a Test Case
In the next step, you will run a test case and check the response the service returns.

In the Runtime window click .Open Test Case

The Runtime window switches from tab to tab , which contains the Run Test Cases E2E SOAP Test Tool
. With this tool, you can edit SOAP requests of defined test cases that will be sent to the service. The
returned SOAP responses can be viewed as well.

https://doc.scheer-pas.com/display/BRIDGE/Builder+User+Guide

1.

2.
3.
4.
5.

On the left panel, you find a tree with entries representing the WSDL definition of the service. On the right
panel, you will find the SOAP requests and SOAP responses of selected test cases.

The following items are displayed for
each WSDL definition:

identifier of the WSDL definition
(deployed xUML service)
name of the service
name of the port type
name of the operation
name of the test case

When you start a service in the Embedded Runtime, the SOAP Test Tool imports the WSDL from the
service repository and creates a test case automatically. The SOAP requests and responses will be
stored with the test case on disk, so they are not lost when you close MagicDraw.

The test case has been created automatically and is displayed next to a gearwheel . The getTitle
gearwheel in gray color indicates that this test case has not yet been run.
The SOAP Test Tool contains a and a tab in the right panel of the window. Now, Request Response
define the request that should be sent to the service.

In the tab, click a first time to select it, and a second time to edit it. Enter an input Request inputTitle
string as shown in the picture below and press . The string object is the input parameter Enter inputTitle
of the operation as defined for the port type and implemented in the activity diagram.getTitle

Click the test case with the right mouse button and select .getTitle Run

Running a test case means that the SOAP Test Tool sends a SOAP request containing the defined input
data to the service hosted by the Embedded Runtime.

After successful execution of the test case, the gearwheel color changes to green. The SOAP Test Tool
switches to the tab and shows the results. The input title has been returned in uppercase.Response

If the gearwheel is displayed in red, a runtime error has occurred.

Two new tree entries below the test case are displayed. They represent the request and getTitle
response logs containing the SOAP messages the SOAP Test Tool sent and received.

When clicking the entry in the tree, an additional tab opens and displays the request.log Request Log
request SOAP message that has been sent to the Web service.

When clicking the entry , the tab opens and displays the result that the Web response.log Response
service has returned to the SOAP Test Tool.

It is also possible to create multiple test cases for a single operation. Each test case can be run with
individual input values.

Further test cases can be created
by selecting Create Test Case
from the context menu of the
operation .getTitle

Now stop the service running in the Embedded Runtime. This will stop the corresponding Bridge server
process.

You can do this in two ways:
Either switch to the tab in the Runtime window and click the stop icon ...Run

... or stop the
service by
selecting Stop
"EducationLe

 in the sson1"
context menu
of the
deployment in
the Model
Compiler.

This can also
be done in the
Model
Compiler
menu if Run
the
deployment is
selected.

After stopping the service the gearwheel in the Model Compiler window turns gray again.
For more information on how to work with the Test Cases View refer to the .Builder User's Guide

Debugging the Service
In this chapter, you will learn how to debug a service. The E2E Builder provides the E2E Interactive
Debugger, which allows you to debug a service step by step by setting breakpoints in the activity
diagrams of UML models. You can step directly into each action of an activity diagram within MagicDraw
and examine the executed action script and runtime values of all objects.

For debugging purposes, the service has to be started in debug mode.

Select the
deployment of
your service
in the Model
Compiler and
choose Debug
"EducationLe

 from sson1"
the context
menu.

After the Runtime window showed the service starting up, the tab is displayed and the service is Debug

ready to be debugged. Clicking will stop the service at any time, clicking will restart it in debug
mode again.

Usually, you define a breakpoint on an action node in the activity diagram and start the test case in order
to debug the service. Then, you can step through the activities, look at object values, and trace errors.

https://doc.scheer-pas.com/display/BRIDGE/Working+with+the+Test+Cases+View

Additionally, you can use the pause mode by clicking the pause button . The interactive debugger will
pause the service at the next possible point: if the test case has not been started yet, this means the very
first action of the service. If the service is already processing the request of the test case, clicking pause
will lead to the service being paused at the next possible action. This is especially useful, if the service is
trapped in an endless loop.

You will now set a breakpoint in the activity diagram of your service. The interactive debugger will stop at
the action where you have set the breakpoint.
In the diagram pane switch to diagram .Get Title

Right-click the action node and select from the context menu.Get Title Add Breakpoint

Click in the Interactive Debugger toolbar to view all breakpoints that are set in the UML model.

The Manage
 Breakpoints

dialog
displays a list
of all
breakpoints.
The check
box in front of
each
breakpoint
indicates
wether the
breakpoint is
active or not.
Click to OK
close the
dialog.

Now, you need to start the test case in order to debug the service. Switch to the tab, e.g. by Test Cases
clicking the button in the toolbar and run the test case.Open Test Case

The Runtime window switches back to the tab and shows the service being stopped at the first Debug
breakpoint. The debug tab shines yellow and the action node, the breakpoint was added to, is marked in
yellow in the activity diagram.

The tab of the Interactive Debugger has two panels.Watches/Script

In the left panel, the operation currently being processed () is displayed. The getTitle()
interactive debugger stopped in the implementation (activity diagram) of this operation. It
stopped at the action node, where the breakpoint has been set (in the first line of the left panel it
reads . Blanks in the action node name were replaced by an underscore " "). Below Get_Title _
this action, its input and output parameters are displayed. Currently, the input string inputTitle
having the value is shown.Price Comparison
In the right panel, the action script statements of the current action are displayed. Currently, this
is the set assignment statement set outputTitle = inputTitle.toUpper();

The Interactive Debugger offers you the following possibilities to proceed:

Icon Action Description

Step into the action. The Interactive Debugger steps into the action and stops directly
before executing the next action script statement.

Step over the actual
action and continue
with the next action.

The Interactive Debugger executes all remaining action script
statements of the current action and stops at the beginning of the
next action.

Go up the call stack to
the calling action.

The Interactive Debugger executes all remaining actions of this
activity diagram and returns to the calling activity. It stops at the
next action of this activity diagram.

Go to the next
breakpoint.

The Interactive Debugger continues the execution of the model
until it is stops at the next breakpoint.

In order to debug the action script of the current action, click .Step Into

Note, that in the right panel of the window the action script statement got highlighted. The Script
Interactive Debugger will execute the statement if you step into it.

Click once again.Step Into

The Interactive Debugger executed the action script statement and has stopped at the activity final node
. This is indicated in the first line of the panel ().End Watches getTitle:End

The set statement has been processed and disappeared. In addition to the input parameter , inputTitle
the pane shows the result of the action script execution, the output parameter Watches outputTitle
having the value .PRICE COMPARISON

Click . As there are no further breakpoints defined, the test case will run to its Go To Next Breakpoint
end.

Switch back to the tab .Test Cases

The tab shows the result of the request. The gearwheel is still green as during debugging no Response
error occurred.
All breakpoints are stored within the Builder project. Debugging the service in another session, all
breakpoints are still set.

For more information on how to debug a service refer to the .Builder User's Guide

https://doc.scheer-pas.com/display/BRIDGE/Interactive+Debugger

	Testing with E2E Interactive Debugger Lesson1 MD18

