
Event Observer Service
A class stereotyped models the Event Observer. The difference between Timer <<E2EEventObserver>>
and Event Observer is how the corresponding event handlers are modeled. An activity assigned to the
Timer class models the Timer event handler. For the Event Observer, the event handler activity is not
assigned directly to the Event Observer class. Instead, the activity assigned to the Event Observer class
calls explicitly the event handler, because UML 2.0 allows us to model time events in activities explicitly
(see activity).Modeling the Behaviour of an Event Observer

The following use case diagram shows the use cases that illustrate the behavior of an Event Observer.
The complete model is found in the example file.

Figure: Event Observer Use Cases

The next chapter provides an overview of the components required to build an Event Observer service.

Event Observer Behavior
The following activity () was assigned to the class. In UML, Event Observer Activities EventObserver
this implies that this activity diagram governs the behavior of this class.

Figure: Modeling the Behavior of an Event Observer

In contrast to UML 1.x, UML 2.0 offers to model time events in activities using time-triggered transitions .
In order to draw such a transition, you first need to draw a time event symbol and then a transition to an
action state or a sub-activity state starting from the time event symbol.

Figure: Transition from Time Event to Action Node

On this Page:

Event Observer Behavior
Event Observer
Components

Example File (Builder project Add-ons/Scheduling):

<your example path>\Add-ons\Scheduling\uml\eventObserver.xml

https://doc.scheer-pas.com/download/attachments/2286600/Scheduling.zip?version=1&modificationDate=1538479753000&api=v2

The hour glass symbolizes time events. To configure this symbol, open the time event specification
dialog, select whether the time event is absolute or relative, and enter a time expression such as every
10 seconds.

Figure: Configuring Time Events for the Event Observer

The term every 10 seconds defines that a time event is triggered every 10 seconds. every is a keyword.
The expression every 10 seconds is equivalent to setting the tagged value to 10 seconds repeatInterval
when using a Timer. The correct syntax of Event Observer time expressions is:

every <TimeDurationExpression>

For the syntax of refer to . In addition to a time duration <TimeDurationExpression> Time Durations
expression, the time-triggered transition can be configured by using all tagged values defined for Timer
instances (see).The only exception is the tagged value , which is Timer Deployment repeatInterval
covered by the time expression. For example:

Figure: Example of Configuring a Time-Triggered Transition with Tagged Values

To reverse the position of the hour glass and the configuration information for a time event, select the
time event on the activity, position the cursor over the time event, and click the Rotate State button. The
button appears only when the cursor is positioned over the time event.

The activity models the behavior of an Event Observer Modeling the Behavior of an Event Observer
class by defining the time events and the handlers of the time events. The activity has no initial state.
Instead, the targets of both time-triggered transitions define the start points of the event handler. An
event handler start point can be any activity, such as the sub-activity or a call operation Read Directory
action calling an operation of the Event Observer class (for instance). In writeLogFile Modeling the

, one time event triggers a lookup in a directory. If this directory contains Behavior of an Event Observer
files, the activity calls the Event Observer operation . The implementation of this sub-writeResultFile
activity operation call is not shown here. Refer to the example file.

Sometimes it is reasonable for one Event Observer to trigger more than one time event because the
observed events are associated logically . This can be done by drawing another hour glass symbolizing
another time event (see).Modeling the Behavior of an Event Observer

The Bridge supports no synchronization mechanism between parallel running event handlers. By
definition, the event handlers are independent. Therefore, if event handlers have common
dependencies, such as shared resources, the modeler must consider this issue.

https://doc.scheer-pas.com/display/BRIDGE/Time+Durations
http://wiki/display/E2EDOC/Timer+Service#TimerService-TimerDeployment

Event Observer Components
A service component stereotyped models an Event Observer service (<<E2EEventObserverService>> Ev

) . The class () represents the actual entObserverService EventObserver <<E2EEventObserver>>
Event Observer. An activity assigned to the class contains the calls to the event handlers. The class can
have operations that model the behavior of this class. They may contain the event handler.

Also, the component diagram contains the because, in this example, the Event FileSystemService
Observer service uses the local file system.

Figure: Event Observer Component Diagram

The composite contains an Event Observer service artifact(EventObserverExample <<E2EEventObserv
). The Event Observer service contains the event observer class ().erService>> EventObserver

The backend service alias , shown in the component diagram above, is FileSystemServiceAlias
required because the activities access the file system. For more details, refer to the example file.

Running the xUML service, the service may write the following warning to the xUML service
standard log:

[Warning][External][TIMADLM][13][Event dropped, queue is full. Request
: <internal activity diagram ID>not being executed

The Bridge provides a mechanism for viewing the xUML service standard log. Troubleshooting
 describes the reason for, and solution to, this problem.Timer and Event Observer Services

https://doc.scheer-pas.com/display/BRIDGE/Troubleshooting+Timer+and+Event+Observer+Services
https://doc.scheer-pas.com/display/BRIDGE/Troubleshooting+Timer+and+Event+Observer+Services

	Event Observer Service

