
Implementing REST Methods
The Bridge helps you with implementing REST methods. This page explains how REST methods have to
be implemented so they can be called via REST requests and how different kinds of REST parameters
have to be defined so they are provided to the service automatically by the Bridge.

Example shows the REST implementation of a simple support case Add-ons/REST/supportManager
manager. With this example, you can

create a new support case using a POST request
get information on support cases in general, on specific support cases, and on customers using
GET requests
mark a support case as resolved using a PUT request
mark a support case as closed using a DELETE request

For simplification reasons, the example uses persistent states to persist the support cases. Normally, you
would probably implement this use case using a database instead.

REST Methods
With REST methods, the Bridge distinct between methods and methods (as described in verb named RE

). REST methods have to be static and must have stereotype .ST Service <<REST>>

Implementing Verb Methods

Verb methods intercept requests issued directly to the resource. Verb methods can only path parameters
that are defined on the parent resource(s).
With the Bridge, you can implement all available HTTP methods as REST methods, as there are GET,
POST, PUT, DELETE, PATCH, HEAD, and OPTIONS.

Look at the verb methods implemented in the example:

On this Page:

REST Methods
Implementing
Verb Methods
Implementing
Named Methods
Error Handling

Error
Handling
for
Specific
Error
Classes

REST Parameters
Output: Body
Parameter

Example
Output: Header
Parameter

Example
Input: Path
Parameter

Example
Input: Body
Parameter

Example
Input: Query
Parameter

Arrays
Optional
Paramete
rs
Example

Input: Header
Parameter

Optional
Paramete
rs

Related Pages:

Defining a REST Service
Interface
REST Service Reference
RESTful HTTP Service

Example File (Builder project Add-ons/REST):

<your example path>\Add-ons\REST\uml\supportManager.xml

<your example path>\Add-ons\REST\uml\supportManager_auth.xml

The Trailing "/"

Verb methods can be in form of or . The difference is subtle but significant. It is important GET GET/
to understand the difference.

Have a look at the support manager example.

A with a trailing on the URL should always return a list of resources. Issuing a onGET / GET
is expected to return a list of existing support cases./support/supportcases /

A without trainling o the URL should always return more general information on the GET /
resources. A on is expected to return information on the GET /support/supportcases
support cases in general, e.g number of support cases, list of customers afflicted, ...

https://doc.scheer-pas.com/display/BRIDGE/REST+Service
https://doc.scheer-pas.com/display/BRIDGE/REST+Service
https://doc.scheer-pas.com/display/BRIDGE/Defining+a+REST+Service+Interface
https://doc.scheer-pas.com/display/BRIDGE/Defining+a+REST+Service+Interface
https://doc.scheer-pas.com/display/BRIDGE/REST
https://doc.scheer-pas.com/display/BRIDGE/RESTful+HTTP+Service
https://doc.scheer-pas.com/download/attachments/2286600/REST.zip?version=5&modificationDate=1653990627000&api=v2

Just assign the name of an HTTP method to the REST method and the Bridge call it on the
corresponding request. Append a trailing to the method name to make the distinction described in the /
note above (see and on resources and in the figure above).GET GET/ supportcases customer

Find below an overview on the REST methods provided by the example:

Resource REST
Method

Description Tag
httpMethod

Input In
via

Output (body)

supportcas
es

GET get a support
case overview

GET or blank none SupportCaseInfo, a complex object containing some
general information on the resource.
In the example, these are number of support requests
and a list of customers afflicted by support cases.

GET/ query support
cases

GET or blank none ListOfSupportCases

status query

custom
erName

query

POST create a new
support
request

POST Suppor
tCase

body SupportCase

supportcase GET get a specific
support case

GET or blank id path SupportCase

DELETE close support
case

DELETE id path ResolveMessage (Please also see note above.)

customer GET/ get all support
cases of a
specific
customer

GET or blank custom
erId

path ListOfSupportCases (Please also see note above.)

For more information on REST parameters, e.g. input methods, see section further REST Parameters
below.

Output parameters should be of complex type.
Arrays are allowed but not accepted by all clients,
so the compiler will throw a warning. Better wrap
the array in a complex type:

Implementing Named Methods

Named methods are methods that refer to a HTTP method, but have a divergent name, e.g. in resolve
the support case manager example.
To call such an method, append its name (or) to the parent resource.relativePath

Resource REST
Method

Description Tag
httpMethod

Input In
via

Output
(body)

supportcase resolve set the status of the support
case to resolve

PUT id path ResolveM
essage

Error Handling

Each REST port type should have a class assigned. The Bridge will use this class as <<RESTError>>
output in case of error (see).Defining a REST Service Interface

In the support manager example, REST port type SupportAPI has class assigned as error RESTError
class.

Using function , you get access to the HTTP response object and can set getRestHttpResponse()
the error details:

local response = getRestHttpResponse();
set response.responseObject = <my error object>;
set response.httpStatus = <HTTP status code>;

Assign the error object and a HTTP status code that corresponds to the error. This information will be
returned via the HTTP response.

The xUML Runtime will recognize attributes as error code and/or error message under the following
conditions:

if you applied the names and/or to these attribute(s)code message
if you applied the stereotypes and/or to these <<RESTErrorCode>> <<RESTErrorMessage>>
attribute(s)

In this case, Runtime error codes and/or messages will automatically by assigned to these attributes in
case of error.

In the support manager example, if user does not provide a support case id with the REST call, the
implementation is as follows:

Error Handling for Specific Error Classes

If you defined a specific error class or for a specific HTTP status code as described on Blob Defining a
, you can use the same way as described above to provide the error details to the REST Service Interface

response. Provide the error details to an instance of the specific error class or and provide the error Blob
class to the response object.
Look at activity of the support manager example:Handle Authorization Errors

https://doc.scheer-pas.com/display/BRIDGE/Defining+a+REST+Service+Interface#DefiningaRESTServiceInterface-RESTErrors
https://doc.scheer-pas.com/display/BRIDGE/Defining+a+REST+Service+Interface#DefiningaRESTServiceInterface-RESTErrors
https://doc.scheer-pas.com/display/BRIDGE/Defining+a+REST+Service+Interface#DefiningaRESTServiceInterface-RESTErrors

REST Parameters
REST methods do not need to have parameters, but they can have. Typically, they will at least have an
output parameter giving back a status or the resource content.
Parameters that are coming with the REST call are automatically provided to service parameters. Output
parameters are provided to the request body.

If a parameter is not provided by the caller, it will come in as NULL or have the default value, if there is a
default specified. For more information on how to specify a default, see .Attribute Specification

 Input Input parameters can come via path, body, query, or header of the HTTP request. :
Principally and as a default, all defined input parameters are mandatory, only query and header
parameters can be c hanged to be optional (see further below).

:Output There can be no or exactly one output parameter via the response body. It has to be of
complex type or of type . More output parameters can be specified via the HTTP headers.Blob

The Bridge supports JSON and XML content types, whereas JSON is the default if no divergent content
type is specified. For more information on the supported content types, refer to .Calling REST Services

Output: Body Parameter

The REST method can provide no or exactly one output parameter via the response body. If an output is
provided via the body, this has to be of complex type or of type .Blob

Depending on the and headers, the Bridge will provide the response as JSON or Content-Type Accept
XML.
For more information on the supported content types, refer to .Calling REST Services

Example

Activity diagram shows the implementation of a body output parameter. It implements Get Support Case
a GET request on a specific support case and the support case data is provided via a complex parameter.

Parameter is a complex structure and will written to the response body. The output format supportCase
can be JSON or XML depending on the accept header specified in the request.
For more information on the supported content types, refer to .Calling REST Services

Output: Header Parameter

The REST method can provide multiple output parameters via the response headers. These parameters
can be of simple type or array of simple type.

Example

As of ,we changed how the Runtime handles header parameters that are not Runtime 2019.1
set. If you do not set a header parameter that is defined for an operation, this parameter is
omitted and not provided in the response headers.
In older Runtime versions, such parameters were provided with .NULL

https://doc.scheer-pas.com/display/BRIDGE/Attribute+Specification
https://doc.scheer-pas.com/display/BRIDGE/Calling+REST+Services
https://doc.scheer-pas.com/display/BRIDGE/Calling+REST+Services
https://doc.scheer-pas.com/display/BRIDGE/Calling+REST+Services

Activity diagram shows the implementation of a header output Get All Support Cases of Customer
parameter. It implements a GET request support cases of a specific customer. The support case data is
provided via the response body as an array of complex type, the record count is provided via the
response headers.

Parameter is transferred via the response headers:count

Input: Path Parameter

Path parameters are part of the path and, thus, part of the URL, e.g. . /support/supportcases/1234
They are all required. All path parameters are automatically provided to method parameters of the
service having the same name. They must be consumed by the called method and must have the same
name as the path segment identifiers (without colon, though).

They can be of type , , , , and . During parsing the request, these Integer Float String Boolean DateTime
are treated as and then will be converted to the types defined in the model. Conversion errors Strings
will be handled by the Bridge by sending a 400 response ("Bad Request.").

Example

Activity diagram shows the implementation of a path parameter. It implements a GET Get Support Case
request on a specific support case and the support case id comes via the request URL.

Parameter is a rest parameter that comes with the resource path. Its value is transferred automatically id
to the method parameter having the same name. Type conversion to types divergent to is applied String
automatically by the Bridge.

Figure: Specification of REST Parameter id - Input Method

As you can see from the screenshot above, parameter has a defined input method . That implies, id path
that the corresponding resource has this parameter defined on its relative path.

Input: Body Parameter

Body parameters are transferred in the request body. Since there is only one body in a HTTP request,
only one body-parameter can be defined for an method. Body parameters have to be of complex type.

The form of the body should correspond to the content type coming with the request. At the moment, the
Bridge supports and content types.application/json text/xml
For more information on the supported content types, refer to .Calling REST Services

Example

Activity diagram shows the implementation of a body parameter. It implements a NewSupport Case
POST request to create a new support case and the support case data comes via the request body.

Parameter is a rest parameter of complex type that comes via the request body. Its value supportCase
is transferred automatically to the method parameter. Type conversion is applied automatically by the
Bridge.

Figure: Specification of REST Parameter supportCase - Input Method

To be in line with the HTTP specification, body parameters are allowed for PUT, POST and PATCH
requests only.

https://doc.scheer-pas.com/display/BRIDGE/Calling+REST+Services

The content that comes within the body (whether JSON or XML) must represent the structure given by
complex type .SupportCase

Input: Query Parameter

Query parameters are provided to the service via the standard query-string. It is appended to the path
after the delimiter and key-value pairs are delimited by , e.g. ? & /support/supportcases/?

. status=in%20progress&customerName=Wishes%20unltd
The Bridge will ignore unknown parameters, known parameters will be decoded and passed to the
method. It is not necessary to provide all possible parameters with the query-string - omitted parameters
will be NULL or have the specified default value (see).Attribute Specification

Query parameters can be of any simple type (, , , , , and) or Integer Float String Boolean DateTime Blob A
. During parsing the request, these are treated as and will be converted to the types defined rray Strings

in the model. Conversion errors will be handled by the Bridge by sending a 400 response ("Bad
Request.").

Arrays

Arrays are accepted, but they must be continous arrays. A request like /my_resource?
 is valid and produces two parameters:a=1&b=2&a=3&a=4

an array of a = ['1', '3', '4']Strings
a b = '2'String

A request like is not valid./my_resource? a[0]=1&b=2&a[5]=3&a[6]=4

Optional Parameters

As per default, all REST parameters are mandatory. As it concerns query parameters, this setting can be
changed by the modeler using the multiplicity tag of the parameter. Set the multiplicity from to undefined

 to make the parameter optional.0..1
This setting will be written to the service descriptor file that describes the interface of the REST service.

Example

Activity diagram shows the implementation of a query parameter. It implements a Query Support Cases
GET request on support cases by status and/or customer.

https://doc.scheer-pas.com/display/BRIDGE/Attribute+Specification

Parameters and are rest parameters that come via the query-string. Their value status customerName
is transferred automatically to the corresponding method parameters of the same name. Type conversion
is applied automatically by the Bridge.

Figure: Specification of REST Parameter status - Input Method

Input: Header Parameter

Header parameters are transferred through request headers. Similarly like query parameters,
unrecognised items are ignored.

Optional Parameters

As per default, all REST parameters are mandatory. As it concerns header parameters, this setting can
be changed by the modeler using the multiplicity tag of the parameter. Set the multiplicity from undefined
to to make the parameter optional.0..1
This setting will be written to the service descriptor file that describes the interface of the REST service.

	Implementing REST Methods

