
Querying Databases

In order to make an activity interact with a database, use the stereotype for an action <<SQLAdapter>>
node. The tagged value then will contain the SQL statement (see).sql Performing Static SQL Statements
However, there is also the possibility to give the SQL statement as input string (see Performing Dynamic

 .SQL Statements)

The SQL adapter has the tagged value . Aliases are stereotyped UML artifacts. Their purpose is to alias
link E2E adapters (defined in the activity diagram) with configuration settings of accessed backend
systems. The aliases are defined and configured in the component diagram.
For more details, see SQL Deployment.

The example accesses the database. This SQLite database is installed together with Employee.sqlite
the SQL examples.

Performing Static SQL Statements
In the example below, the action node is named . It will access the <<SQLAdapter>> read Employee
database that is associated with the alias in the component diagram.Employee

The input object of the action node is , which is of complex type . It is used in the SQL key EmployeeKey
script that is entered in the script section of the action node. The last line of the action script references
the attribute of the parameter. The resulting output of the query is returned to the caller in the Id key
output object of type .Employee ResultEmployee

Figure: SQL Adapter – Read Example

Writing SQL Queries

In the SQL script, all input variables have to be prefixed with . All columns that are returned from the IN::
database should be prefixed with . This prefix is optional, but enables consistency checks during OUT::
the compilation phase.
In the example above , the xUML Model Compiler checks if the columns , , , NAME FIRSTNAME ID BIRTHD

, , can be mapped to attributes having the same name in the ATE NULLFELD LASTUPDATE ResultEmploy
 class. If the names do not match, the Model Compiler will display an error message.ee

On this Page:

Performing Static SQL
Statements

Writing SQL
Queries
Blob Handling
Selecting Multiple
Records

Parameterized SQL
Statements

Using CLOBs in a
Parameterized
SQL Statement

Performing Dynamic SQL
Statements

Using a Dynamic
Table Name
(Security
Considerations)
Using
Parameterized
SQL With the IN
Clause

SQL Adapter Output
Mapping of
Database Fields

Related Pages:

SQL Deployment
Database-Specific
Mappings

This page explains the in Bridge context. If you were looking for the same SQL Adapter
information regarding the , refer to in the Designer guide.PAS Designer SQL Adapter

Example File (Builder projectAdd-ons/SQL):

<your example path>\Add-ons\SQL\uml\sqlQueries.xml

Example databases can be found in:

<your example path>\Add-ons\SQL\resources\templates\binaries

https://doc.scheer-pas.com/display/BRIDGE/SQL+Deployment
https://doc.scheer-pas.com/display/BRIDGE/SQL+Deployment
https://doc.scheer-pas.com/display/BRIDGE/Database-Specific+Mappings
https://doc.scheer-pas.com/display/BRIDGE/Database-Specific+Mappings
https://doc.scheer-pas.com/display/DESIGNER
https://doc.scheer-pas.com/display/DESIGNER/SQL+Adapter
https://doc.scheer-pas.com/download/attachments/2286600/SQL.zip?version=3&modificationDate=1627545839000&api=v2

After receiving the result from the DBMS at runtime, the Bridge checks if the columns can be mapped to
the attributes of the output object (upper and lower case is not distinguished). If the xUML Runtime
cannot map the result sets to objects, it will throw an error.
In the above example, only one record is expected to be returned from the DBMS because the <<SQLAd

 action returns one object only. If the DBMS were to return multiple records, the xUML Runtime apter>>
would throw an error.

If you want to make the database table partly variable, you can use the tagged values and schema table
 (see).Qualifier SQL Deployment

schema is a string that prefixes tables and stored procedures. It changes the table name to
<schema>.<table name>, e.g. .S1.TEMPLOYEE
tableQualifier is a string that prefixes tables. It changes the table name to
<tableQualifier><table name>, e.g. .TQ1TEMPLOYEE

Both values can be changed on the deployed Bridge service. Also, a combination of both is possible:
<schema>.<tableQualifier><table name>.

Blob Handling

Some databases handle BLOB columns differently to their other types. Therefore, the xUML Model
Compiler must recognize BLOB columns. This is achieved by marking the column name within the IN::
keyword, i.e. .IN:<blob column name>

If you want to write database records containing columns that are represented by type , you have to Blob
use the following in your SQL query

for inserts

IN:<column_name>:<variable_name>

for example:

INSERT INTO E2ETYPES
(E2E_BLOB) VALUES (IN:E2E_BLOB:e2etypes.e2e_blob)

for updates

<column_name> = IN:<column_name>:<variable_name>

for example

UPDATE E2ETYPES
SET E2E_BLOB = IN:E2E_BLOB:e2etypes.e2e_blob
WHERE ID = IN::id

This works only if the tables are marked using the keyword, e.g in TABLE:: TABLE::TEMPLOYEE
SQL statements. If you do not prefix the table name by , the tablename is used as it is.TABLE::

Example File (Builder projectAdd-ons/SQL):

<your example path>\Add-ons\SQL\uml\sqlBlobs.xml

Note that the usage of is deprecated and will not work with multiple blobs in one query. BLOB::
Be aware of the fact that some DBMS do not support more than one blob column.

https://doc.scheer-pas.com/display/BRIDGE/SQL+Deployment
https://doc.scheer-pas.com/download/attachments/2286600/SQL.zip?version=3&modificationDate=1627545839000&api=v2

Selecting Multiple Records

If you expect a query to return more than one record, your result object must be an array (base type Array
). The type of the array elements, in this case the complex type , is defined on the array ResultAddress
object by the tagged value (stereotype is). The implicit mapping from arrayElement <<E2EArray>>
columns to object attributes works like in the first example.

Figure: SQL Adapter – Query Example

Parameterized SQL Statements
You can use the SQL Adapter with parameterized statements that get their parameters via a map.

Figure: Dynamic SQL with Parameterized Statement

Within the SQL statement, replace values by . Provide parameter/value pairs :<name of the parameter>
in a map called . The xUML Runtime will identify the map by this name and automatically inputBindings
replace the parameters in the SQL string by the values given by the map.

You can use parameters with all kinds of SQL statements: with static and dynamic usage of the SQL
adapter as well as with all kinds of database access (query, update, delete, ...). Please also respect all
restrictions applying to the usage of the static and dynamic SQL Adapter, e.g. to .Blob handling

Using CLOBs in a Parameterized SQL Statement

CLOB values need a special treatment.

They cannot be directly inserted to the map - you have to use the indirect way via a CLOB object:

create aCLOB;
set aCLOB.value = inputCLOBValue;
set dummy = inputBindings.setMapValue("parameterName", aCLOB);

Now you can use parameter in your SQL statement to access the CLOB value.parameterName

Do not use numeric parameter identifiers, e.g. . However, identifiers like are allowed.:12 :id2

Performing Dynamic SQL Statements
It is also possible to provide the SQL Adapter with an input string that contains the SQL statement. You
can use this to build full dynamic SQL statements.

The following figure shows an example of a dynamically generated SQL statement. The adapter expects
the input parameter , if it does not have a static SQL statement given as value of the tag.sql sql

Figure: Example of a Dynamic SQL Statement

Using a Dynamic Table Name (Security Considerations)

It may be that at development time the name of the table to query is not yet known. In this case you can
use dynamic SQL, and build statements that get the table name from e.g. a service setting:

local tableName = setting("Table Name", "temployee");
set sqlStatement = concat("select NAME, FIRSTNAME, DEPARTMENT from ",
tableName, " where id=:id");

Using Parameterized SQL With the IN Clause

The xUML Runtime does not allow to build dynamic SQL statements like select NAME, FIRSTNAME
 . SQL from TEMPLOYEE where name in (IN::<a list of concatenated values>)

statements like this will not return the expected results or not work at all.
If you want to build a dynamic SQL statement and use the clause, you need use parameterized SQL IN
as described above (see).Parameterized SQL Statements

The activity diagram below shows an example implementation from the example.sqlQueries

Note that it can be a security issue, if the input SQL string (or parts of it) comes as an input
parameter from outside the service. This would give the caller the possibility to inject malicious code.

The SQL string must not contain or qualifiers. For instance, a valid SQL string might IN:: OUT::
look like: sqlStatement "select NAME, FIRSTNAME from TEMPLOYEE where set =
Id=5";

Security remark: From a security point of view it is important to control the building of the SQL
statement.

Getting the table name from a service setting is safe, getting the table name via an
operation parameter would be not.
It is also recommended to (see) and use SQL parameters Parameterized SQL Statements
not to use to add operation parameters directly to the clause.concat() where

1.

2.

Build a map that contains a list of parameters that represent the values from the clause.IN
Implement a loop to create the map. The map key mustn't be numeric: The example above uses
a concatenation of "p" and the index.
Build the parameterized SQL statement and concatenate the parameters from the map.
Get the map entries to an auxiliary array and reduce this array to a string containing the list of
parameters. Then, you can use this string to populate the list of values for the clause.IN

SQL Adapter Output
For statements, the SQL adapter needs an output record class (or an array of this class, if the SELECT
statement creates multiple output records) to store the adapter output to. Here the SQL Adapter tries to
match the table column names with the attribute names of the output class.
For all types of statements there is an additional output parameter . This parameter affectedRows
returns the number of rows affected by the SQL statement. This comes in handy if the modeler must take
into account if e.g. updates had some effect or not.

Mapping of Database Fields

In general, database-specific types are mapped to the Bridge base types like described on Database-
.Specific Mappings

If you query a database and want to store the query results in object attributes of base type , the Boolean
xUML Runtime tries to map each table column type to the Boolean attribute type. For instance, if a
database query returns a string or numeric representation of a Boolean table field like , , (for true false 1
true), or (for false), the xUML Runtime will map these values to the Boolean attribute values true or 0
false accordingly.

https://doc.scheer-pas.com/display/BRIDGE/Database-Specific+Mappings
https://doc.scheer-pas.com/display/BRIDGE/Database-Specific+Mappings

	Querying Databases

