
Concepts of the Security Model
In addition to the standard MDI development patterns, which are described in E2E's White Paper on
Model Driven Integration, three concepts form the basis for E2E's MGS framework: the , Principal Object

 and the .Role Based Access Control InterceptorModel

The Principal Object
The object represents the user invoking the current request. Besides a compulsory attribute Principal Us

, it may have one ore more security tokens, roles, and attributes.erID

UserID is a unique identifier of the user. Depending on the authentication process it may or may
not be identical with a user name.
SecurityTokens is an array of objects describing the credentials used for SecurityToken
authentication. The attribute defines what mechanism of authentication was used and how Type
the rest of the object is structured. Currently, only is supported, which works with plain Basic
text user name and password. The attribute is set to true, if the given credentials IsVerified
were successfully verified.
Roles is an array of objects. See the next chapter for more information about role based Role
access control.
Attributes is an array of objects. An attribute is a name-value pair that can be used to Attribute
specify any additional information about the Principal not covered by security tokens and roles.

Figure: Class Diagram of Principal

If authentication is not configured, the Principal will have the UserID with no security tokens, anonymous
roles, and attributes assigned.

Role Based Access Control
Various job functions within a given organization have particular roles assigned, granting the permission
to perform certain operations. Since users are not assigned any rights directly, but acquire them through
their role (or roles), management of individual user rights becomes a matter of assigning the appropriate
roles to the user, simplifying common operations such as adding a user, changing a user's department or
job function.
Besides explicit manual role assignment, there may also be dynamic, rule based assignments to
determine the roles a user currently has, e.g. by mapping user credentials or by using system information
like the current IP address.
Within the E2E Bridge, the roles allowed or required to access certain operations are modeled within
UML Use Case diagrams which are relevant for the E2E Model Compiler. Each actor accessing an
operation represents a role with specific execution rights. Users invoking a certain operation need to
have at least one of the required roles as defined by the actors. In the following paragraphs, we will
investigate several examples to describe how the E2E Bridge manages roles and access rights.
In Example 1 (see Figure 2), Operation A can be accessed by both user roles, Supervisor and Employee,
whereas Operation B is only accessible by users with the role Supervisor.

Figure: Use Case and Roles Example 1

On this Page:

The Principal Object
Role Based Access Control
Interceptor
Interaction Overview

Related Pages:

Security Reference

Example File (Builder project Advanced Modeling/Security):

<your example path>\Advanced Modeling\Security\uml\interceptorHelloWorld.xml
<your example path>\Advanced Modeling\ \uml\interceptorHelloWorldAdvanSecurity
ced.xml

https://doc.scheer-pas.com/display/BRIDGE/Security
https://doc.scheer-pas.com/download/attachments/2286600/Security.zip?version=1&modificationDate=1538480581000&api=v2

In the first example, operation can be accessed by both, and , whereas A Supervisor Employee
operation is only accessible by users with the role .B Supervisor

Figure:Use Case and Roles Example 2

In the second example, operation is only accessible with the role . A user explicitly needs A Employee
the role to access operation , even if he is a .Employee A Supervisor
In the Bridge, access rules are only enforced if explicitly enabled by the modeler. This is done by putting
protected operations into a System Boundary of stereotype .<<InterceptorModel>>

Figure Use Case and Roles Example 3

In example 3, Operation A is accessible by anyone and the actor Employee is just a symbolic
representation of any user invoking the request. Operation B however is protected by role based access
control and a user requires the role Supervisor to invoke it.

Interceptor
Any security measure like authentication, authorization, encryption and validation could be implemented
as part of an application. However in practice it is preferable to make this functionality transparent for
applications and developers.
Advantages of a separation are:

A proven security infrastructure and authorization model can easily be applied to new services.
The security infrastructure and authorization model can be updated or replaced without impact
on the business logic.
Security is a complex topic and does require special knowledge. With separation application
developers can concentrate on their area of expertise.

A common concept is the . An Interceptor is an application and/or device which is sitting in Interceptor
front of the actual service and intercepts any request sent to and reply sent from the business
application. The interceptor can also be used without security - e.g. to implement central logging or
validation using the preprocessor. In that case one define a use case model without actors (roles) but
having pre- and postprocessors defined.

Figure: Concept of a Basic Security Interceptor

The functionality of an interceptor varies. It typically covers one or more of these areas:

Authentication of users
Authorization of users
Encryption and decryption of data
Creation and verification of signatures

Common network components like firewalls, secure-proxies, authentication modules for web servers fit
above definition. There are 3 party products for transparently protecting WebServices that can be rd

combined with the E2E Bridge to implement complex security requirements.
E2E Bridge offers its own, built in Security Interceptor mechanism.
The interceptors are activity diagrams that are assigned to the pre- and postprocessor tagged values of
the interceptor model (see also chapter):Role Based Access Control

Figure: Interceptor activities are referred to in the <<InterceptorModel>>

Typically, these activities are put into the interceptor model:

Figure: Interceptor in the containment tree

Deprecated: In former releases, the pre- and postprocessor had one input object of type Preprocessor
respectively . However, they are deprecated, because casting the input- and output Postprocessor
messages proved to be error prone.
Thus, we recommend to use as only in- and output parameter of interceptor activity diagrams the Interce

:ptorMessage

Figure: Interceptor message

The root package (in the example above) and sub-packages containing an interceptor Use Cases
have to have the stereotype applied.<<Repository>>

The contains name of the intercepted operation and a reference to the . InterceptorMessage principal
Note, changes to the parameter are ignored. The only difference between the interceptor operation
message and the deprecated pre- and postprocessor message is the way the operation parameters are
being passed. In the latter case, an artificial wrapper class had to be designed and the Input- and Output
messages had to be cast to this wrapper. However, now the interceptor message holds the given
parameters explicitly in the array. This array contains objects containing the parameters Parameter
parameter name and its value. If the modeller wants to use the parameter value, he must typically cast it
to the parameter type as given in the signature of the operation (an example can be found in chapter Mod

).ifying Output using Postprocessor

Interaction Overview
The following Sequence Diagram illustrates what happens when a user invokes a service protected with
an interceptor:

Figure: Sequence Diagram of the E2E Bridge Security Interceptor

When a user sends a request to the E2E Bridge (1), the bridge invokes a preprocessor, passing it the
input message, the Principal and the name of the operation to be called (2). The preprocessor returns
the, optionally modified, input message and Principal or throws an exception if e.g. access to the service
is denied (3). After the Principals role is verified against the required roles (4), the actual service is
invoked (5). The business logic is executed and returns its result (6) which then is passed to a
postprocessor (7). The returned output message, again optionally modified (8), is then passed back to
the user (9).

Typical applications for a preprocessor are:

Authentication of principal
Applying roles to an already authenticated principal
Decryption of parameters
Logging

Typical applications for a postprocessor are:

Encryption of parameters
Removal of critical parameters
Logging

	Concepts of the Security Model

