
States
States define "resting points" of in an objects life-cycle. An object stays in a state until a defined event
occurs and subsequently an outgoing transition is taken. Find below an overview on the states the Bridge
has implemented:

State Description Related

normal
state

Resting point of an object in its life-cycle. entr
y
beh
avior

Triggered
when the
state is
entered.

do
acti
vity

Executed
when
object is in
state.

exit
beh
avior

Triggered
when the
state is left.

final state The denotes the end of the object's life-cycle. There can be more final state
than one final state or none at all.

 choice (pse
udo state)

Choice is a pseudo state. When a transition enters a choice element, guards
will be evaluated and the matching outgoing transition will be executed.

 fork (pseudo
state)

Fork is a pseudo state. When a transition enters a fork, all outgoing
transitions will be executed.

join The is the opposite of the fork state. It does join multiple parallel join state
paths back into one. Unlike the choice state, all incoming transitions have to
be executed before the outgoing transition is processed.

composite
state
submachin
e state

The is a super state that encompasses one or multiple sub composite state
states. In itself, a composite state .behaves like a regular state

The is primarily used to encapsulate and hide complexity submachine state
behind single states. The behavior of the submachine state is the same as
with .composite state

entry
point
(pseudo
state)

Using and pseudo states, the modeler can define entry point exit point
different points through which a composite state can be entered or left.

exit
point
(pseudo
state)

history
 state

In UML, it is possible to define states within composites that remember the
last state the composite had before it has been left. These states are called
history states.

On this Page:

Entry Behavior
Exit Behavior
Do Activity
Handling Unhandled Errors
Final State
Choice
Fork
Join
Composite and
Submachine States
Entry and Exit Point
History State

You can step in at the following points of a state and add your own code:

Entry Behavior

1.
2.

Whenever a certain state is entered, an entry behavior is triggered. In the state machine diagram above, activity is executed, Check Out Handler
whenever a object enters the state .PurchaseOrder Checked out, waiting for closing
In the assigned activity diagram of the entry handler, the attributes of the persistent state object can be modified using the self keyword. Changes to
the object will be persisted automatically.
The state entry behavior is executed, whenever the state is entered, regardless through which transition. Suppose two signals, and , may trigger A B
two separate state transitions with the same target. Whenever the target state is entered, the state entry behavior is executed, no matter if signal or A B
triggered the state transition.

Figure: State Entry Handler in State Specification

The entry behavior is defined in the compartment of the state's specification dialogEntry

Behavior Type needs to be set to .Activity
Then, select or create the implementing activity in the field.Behavior Element

The entry behavior is executed in the same transactional context as the transition. This means that if an error occurs during an entry activity, the
rollback will include entry behavior of the target state and the transition.

1.
2.

Exit Behavior
Exit behaviors are very similar to entry behaviors. An exit action is executed whenever a state is left through a transition. Like entry actions, even
when there are multiple exit transitions, the same exit action is triggered for all of them.
In the assigned activity diagram of the exit handler, the attributes of the persistent state object can be modified using the self keyword. Changes to the
object will be persisted automatically.

The exit behavior is defined in the compartment of the state's specification dialog.Exit

Behavior Type needs to be set to .Activity
Then, select or create the implementing activity in the field.Behavior Element

Then exit behavior is executed in the same transactional context as the transition. This means that if an error occurs during the transition or at its end,
the rollback will also include the exit behavior.

Do Activity
The do activity is executed when an object "is" in a certain state.
A do activity in practice is very similar to the entry behavior as it is executed when an object enters the state. However, the execution of the associated
behavior does not happen within the context of a transition but starts asynchronously after the entry transition has been successfully completed.
Unlike entry and exit behavior executed within transition contexts, multiple do activities of the same object (when the object is in multiple states e.g.
after a fork) can be processed concurrently. This, in conjunction with parallel execution paths (see chapters and for an example), can be Fork Join
used to execute multiple long-running activities at the same time.

As a downside, due to the concurrency, there are limitations to the manipulation of the persisted objects. After a do activity, changes to the self-object
are not automatically persisted. To modify contents of the persisted object, the do activity has to return the corresponding attributes as output
parameters. For example, the following activity returns the parameters and (this activity diagram can be found in the do firstName lastName pstateFo

 example):rks.xml

Figure: Do Activity

The class owning this activity has two attributes having the same name and type (see following class diagram). Therefore, <<PersistentState>> do
after finishing the activity, these two parameters get synchronized with the persistent state object attributes and .do firstName lastName

Figure: Class to Be Synchronized After Do Activity

1.
2.

The activity is defined in the compartment of the state specification dialogdo Do Activity .

Behavior Type needs to be set to .Activity
Then, select or create the implementing activity in the field.Behavior Element

For example:

Handling Unhandled Errors
If an error occurs in an activity diagram that is not being caught there, the state machine rolls back to the last action. In case of exit-, entry-, or
transition actions, this is the source state. In the case of do-actions, this is the current state. However, it is possible to define a default error handler.

Example File (Builder project Advanced Modeling/PState):

<your example path>\Advanced Modeling\PState\uml\pstateForks.xml

https://doc.scheer-pas.com/download/attachments/2286600/PState.zip?version=3&modificationDate=1653989796000&api=v2

The default error handler is defined as an operation having the stereotype . In the following example, operation <<PersistentStateErrorHandler>> myEr
 is always invoked automatically if an unhandled error occurs.rorHandler

Figure: Default Error Handler in Content Tree

Operation has exactly one input parameter of type named . Its attributes are:myErrorHandler ErrorContext errorContext

Attribute Description Values

actionType actionType specifies where the error occurred. entry Error occurred in an entry
behavior.

exit Error occurred in an exit
behavior.

do Error occurred in a do
activity.

transi
tion

Error occurred on a
transition.

guard Error occurred on a
guarded transition.

actionID These ids basically consist of the action/state name plus a unique identifier.
If special characters and spaces are used in the action name, they will be skipped during generation of the id.
Technically spoken, it must be an NMTOKEN.sourceStat

eID

targetState
ID

The activity diagram implementing the default error handler in the example is depicted in the next figure. Basically, it logs pstatePurchaseOrder.xml
the last error and throws a new one. It is important to note that the default error handler is very similar to a catch all after each action. This has two
consequences:

First, it allows to get the last error using the built-in () operation.getError
Second, if no new exception is thrown in the error handler, the state machine will proceed with processing the next action. Only exception:
the error occurs within a choice (see note further below). Thus, in this example we will throw another exception in the error handler.

 Figure: Throwing the Exception

Example File (Builder project Advanced Modeling/PState):

<your example path>\Advanced Modeling\PState\uml\pstatePurchaseOrder.xml

https://doc.scheer-pas.com/download/attachments/2286600/PState.zip?version=3&modificationDate=1653989796000&api=v2

Final State
The final state - the bull's eye - denotes the end of the object's life-cycle. There can be more than one final state or none at all.

A persisted object is destroyed when a final state is reached. Before the final destruction, any default handler for pending, non-delivered signals will be
executed.
No final state means that the persistent object will stay in the state database forever. This could lead to performance degradation, thus, we
recommend having always transitions to the final state, for example by using time events to implement a time-out behavior. If it is required to save the
object state permanently before destroying it, just use the event handler of the last transition to implement this behavior.

Choice
The is equivalent to the element of activity diagrams. Guards on the outgoing transitions will be checked until one returns true. choice state decision
Only this transition will then be executed.

Choice is a . When a transition enters a choice element, guards will be evaluated and the matching outgoing transition will be executed pseudo state
within the same transactional context. A rollback will go back to the state before the choice. The only values accessible within transition guards
starting from a choice are the attributes of the Persistent State object. They are accessed using the keyword , for example:self

Figure: Choice Pseudo State

1.
2.

If guarded transitions leaving choices fail, the following happens:

The error handler is called with = guard.actionType
The transaction is rolled back. That is, we go back to the source state.

If there are more than two transitions starting from the choice state, the order tag of the stereotype has to be used to order the <<E2EOrdered>>
evaluation of the expressions.

Fork
The splits the execution into multiple parallel paths. All outgoing transitions will be taken and thereafter an object will be in multiple states at fork state
the same time.
Fork is a . When a transition enters a fork, all outgoing transitions will be executed within the same transactional context. A rollback will pseudo state
go back to the state before the fork.

Figure: Fork & Join States

Transitions starting from a choice state must not be triggered by events. In turn, transitions not starting from choices state must not contain
guards. Both invalid alternatives are valid UML, but not implemented to the E2E Bridge.

If guarded transitions fail, the transaction is always rolled back irrespectively of the implementation of the .default error handler

Example File (Builder project Advanced Modeling/PState):

<your example path>\Advanced Modeling\PState\uml\pstateChoices.xml

https://doc.scheer-pas.com/download/attachments/2286600/PState.zip?version=3&modificationDate=1653989796000&api=v2

Join
The is the opposite of the fork state. It does join multiple parallel paths back into one. Unlike the choice state, all incoming transitions have join state
to be executed before the outgoing transition is processed; this is also called . For an example see figure .AND join Fork & Join States

Unlike fork, join is a . After a transition enters a join state, the persisted object will stay in this state until all other transitions arrive. not pseudo state
After the last transition arrived, an internal asynchronous signal will be created that tells the object to leave the join state. If the outgoing transition is
rolled back, the object stays in the join state.

It's not a requirement to pair two sequence flows starting at a fork state by a following join state. It's also valid without the join.

Transitions starting at fork states must neither be guarded nor triggered by events.

Example File (Builder project Advanced Modeling/PState):

<your example path>\Advanced Modeling\PState\uml\pstateForks.xml

Transitions starting at join states must neither be guarded nor triggered by events.

https://doc.scheer-pas.com/download/attachments/2287647/pstate_fork_join.png?version=1&modificationDate=1517314362000&api=v2
https://doc.scheer-pas.com/download/attachments/2286600/PState.zip?version=3&modificationDate=1653989796000&api=v2

Composite and Submachine States
The is a super state that encompasses one or multiple sub states. A composite state can be thought of as a bracket around its sub composite state
states.
In itself, a composite state . It can have entry and exit behaviors that are executed when the state is entered and left. behaves like a regular state
Even though it does not support do activities, the state machine diagram drawn within the boundaries of a composite state acts like a do activity.

Transitions leaving from a composite state will . This can be useful to define signals or time-outs that interrupt terminate any embedded sub states
a process resembled by the sub states. Be aware, that in such a case only the exit behavior of the composite state itself will be called.
A (no specified trigger or a timeout of 0 seconds) is only triggered when the state machine defined within reaches its final state. completion event
When an embedded state machine terminates, but only triggered transitions exit the composite state, the persistent state object will stay in this
composite state until one of the triggers fires.

Using and pseudo states, the modeler can define different points through which a composite state can be entered or left. A entry point exit point
composite state can have multiple entry and exit points.
The is primarily used to encapsulate and hide complexity behind single states. In this regard, it is similar to in UML submachine state sub activity
activity diagrams.
The behavior of the submachine state is the same as with described above. The following examples shows both, a - and composite state composite
a :submachine state

Figure: Composite- and Submachine States

Example File (Builder project Advanced Modeling/PState):

<your example path>\Advanced Modeling\PState\uml\pstateForks.xml

After entering a composite state, the persistent state object is in two states – the composite state and the current state of the flow executed within.

Only composites having one nesting level are supported yet.

https://doc.scheer-pas.com/download/attachments/2286600/PState.zip?version=3&modificationDate=1653989796000&api=v2

Also with submachine states it is possible to control their entry and exit points, though they are called connection points.

For example, the state machine in the next figure calls a submachine using two different connection points.

Figure: Definition of Connection Points When Calling a Submachine

To draw entry and exit points on a sub machine state, use the tool.Connection Point Reference

The connection points are directly linked to - and in the called submachine.Entry Exit Points

Figure: Definition of Connection Points When Calling a Submachine

Of course, the entry and exit points may or may not be paired.

Entry and Exit Point
Entry and are used in conjunction with and . See the previous sections for details. exit points Composite Submachine states

History State
In UML, it is possible to define states within composites that remember the last state the composite had before it has been left. These states are called
history states. For example, in the following state diagram the composite is in state or . When the signal arrives MyComposite Step1 Step2 Error
while the state machine is in , the history state remembers this. Then, if the composite is re-entered receiving the signal, the history Step2 Restart
state will trigger the re-entry of - implying the re-execution of the entry action of .Step2 Step2

Figure: History States

Example File (Builder project Advanced Modeling/PState):

<your example path>\Advanced Modeling\PState\uml\pstateSubstate.xml
<your example path>\Advanced Modeling\ \uml\pstateConnectionPoints.xmlPState

https://doc.scheer-pas.com/download/attachments/2286600/PState.zip?version=3&modificationDate=1653989796000&api=v2

Only composites having one nesting level are supported yet, thus only history states remembering one nested state are supported yet. These
states are called in contrast to flat history states deep history states.

Example File (Builder project Advanced Modeling/PState):

<your example path>\Advanced Modeling\PState\uml\pstateHistoryStates.xml

https://doc.scheer-pas.com/download/attachments/2286600/PState.zip?version=3&modificationDate=1653989796000&api=v2

	States

