
Persistent State Classes
Each class of which instances have to be persistent must have the stereotype . One <<PersistentState>>
or more attributes of this class must have the stereotype , uniquely identifying an object. <<PrimaryKey>>
A persistent state class optionally has attributes stereotyped .<<SearchKey>>

Primary Key and Search Key Attributes
While primary keys are used to identify and address a specific unique object, search keys are used to
query for a list of objects. If you want to query for a list using primary key fields, these fields also require
setting the stereotype.<<SearchKey>>
Only attributes of primitive types can be marked as primary or search key.

Figure: A Persistent State Class

Attributes having stereotype or are represented with different icons in the PrimaryKey SearchKey
containment tree of MagicDraw (see picture below).

Figure: Stereotyped Attributes of a Persistent State Class

Persistent Data
Attributes that are not marked as primary key or search key contain persistent data.

Private Persistent Data

Builder 7.5.0 You can mark attributes of a persistent state class as private by applying stereotype <<E2E
, but we do not recommend this.Private>>

On this Page:

Primary Key and Search
Key Attributes
Persistent Data

Private Persistent
Data
External
Persistent Data

Modifying Persistent State
Classes

Search keys that have not been initialized are . Keep this in mind, if you want to look-up all NULL
persistent state objects using . Either, you need to initialize the search mySearchKey like '%'
key, or you need to extend the search phrase to like '%' or mySearchKey mySearchKey

.is NULL

1.
2.
3.

Refer to for more information.Hiding Attributes From Interfaces

External Persistent Data

Runtime 2019.10 You can mark attributes of a persistent state class as external by applying Builder 7.6.0
stereotype . This can speed-up persistent state performance if you have huge data objects <<External>>
(like e.g. big blobs, IDocs or PDFs) that are only used in few transitions.

External persistent data will be handled differently compared to the internal data as comes to the
following:

External persistent data will be stored separately.
By specifying a divergent alias in the you can even store external Persistent State Components
data to a different database.
External persistent data will only be loaded on demand.

 will only load external persistent data if tag is set to true. In self getObjectCopy() withExternals
context, you need to load external persistent data with a persistent state adapter action with
action .loadExternals
External persistent data will only be saved if loaded before.
Changed external persistent data will be saved at the end of a , but persistent state transaction
you need to load them before. So the correct procedure is:

Load external persistent data (even if they are empty).
Apply changes.
Saving will be done automatically at the end of the transaction.

See also the example at Handling Persistent State Objects With the Persistent State Adapter >
.Loading External Persistent State Data

Using external persistent state attributes, you need to respect the following:

Stereotype can only be applied to strings, blobs, arrays and classes.<<External>>
External attributes cannot be a primary or a search key, so do not mix stereotypes , <<External>>

 and .<<PrimaryKey>> <<SearchKey>>

Modifying Persistent State Classes
Be careful with modifying persistent state classes of a service already running on a Bridge. If you deploy
the modified service, the service might refuse to start-up and throw an error:

Info: Loaded addon PState_AddOn successfully.
Fatal: Found persistent state objects of class "<name of the old class>" that

 does not exist in the repository anymore.
Fatal: Detected objects for which no metadata exist in the repository.
Correct the problem either by restoring class definitions in the model or by

 deleting corresponding objects.
Fatal: Initializing service "PersistentStateService" failed

This can happen e.g. if you remove or change the name of the persistent state class but the persistent
state database still contains objects of the old class. These objects become orphaned in this case.
You can fix this in two ways:

Delete all old persistent state objects using the Bridge (see).Deleting Persistent State Objects
Redeploy the old service and let it work all persistent state objects before deploying the new
one.

Attributes marked as private are not being serialized by the xUML Runtime. As the Runtime cannot
distinct the context of , this results in such attributes not being saved between <<E2EPrivate>>
transitions and states.

https://doc.scheer-pas.com/display/BRIDGE/Attribute+Specification#AttributeSpecification-HidingAttributesFromInterfaces
https://doc.scheer-pas.com/display/BRIDGE/Persistent+State+Components
https://doc.scheer-pas.com/display/BRIDGE/Handling+Persistent+State+Objects+With+the+Persistent+State+Adapter#HandlingPersistentStateObjectsWiththePersistentStateAdapter-GettingCopiesofPersistentStateObjects
https://doc.scheer-pas.com/display/BRIDGE/Persistent+State+Transaction+Concept
https://doc.scheer-pas.com/display/BRIDGE/Handling+Persistent+State+Objects+With+the+Persistent+State+Adapter#HandlingPersistentStateObjectsWiththePersistentStateAdapter-LoadingExternalPersistentStateData
https://doc.scheer-pas.com/display/BRIDGE/Handling+Persistent+State+Objects+With+the+Persistent+State+Adapter#HandlingPersistentStateObjectsWiththePersistentStateAdapter-LoadingExternalPersistentStateData
https://doc.scheer-pas.com/display/BRIDGE/Persistent+State+Classes+and+Objects+of+xUML+Services#PersistentStateClassesandObjectsofxUMLServices-DeletingPersistentStateObjects

	Persistent State Classes

