
Authentication and Authorization

Authentication
The xUML UI allows usage of existing authentication frameworks. In the presented example, a simple
self-made authentication framework based on an SQLite database is used. To authenticate, the user
types name and password into a form. Upon clicking the button, a service call is invoked. This Login
service call verifies that the credentials exist and are correct.

The form, the binding and the behavior is defined within the usual diagrams:

a UI state machine defining the login mechanism

a UI binding diagram

In the above example, the choice whether the log in procedure was successful or not is based on the
attribute . The value for this attribute is defined in the , which isLoggedIn serviceCallOnExit = Login
uses User ID and Password as input parameter. The output parameter of the operation invoked at the
service call is of type . As shown in the binding for the output parameter, the LoginResponse
LoginRepsonse contains, besides others, this attribute . In order to access this attribute for isLoggedIn
the choice within the state machine, the attribute needs to be stored as an attribute of the controller
class. This is done by drawing further <<use>> dependencies, as shown in the figure below.

On this Page:

Authentication
Authorization
Advanced Controlling

Related Pages:

Authentication and
Authorization
File Upload
HTTPS
History State
Form and Form Validation
Calling a UI from external
Applications
Usage of Choices
Service Calls
HTTP Proxy
Controller States
Back Button and Browser
History
Mock-Ups

Example File (Builder project Advanced Modeling/UI):

<your example path>\Advanced Modeling\UI\uml\uiAuthentication.xml
<your example path> \Advanced Modeling\UI\uml\uiLibSecurityServices.xml
<your example path> \Advanced Modeling\UI\uml\uiLibCommentServices.xml

Transitions to a choice state are synchronous transitions by default, as the choice might depend on
data delivered by preceding function calls. If there is no choice state, it might make sense to define
the transition as synchronous by setting the tagged value to false.Is Asynchronous

https://doc.scheer-pas.com/display/BRIDGE/File+Upload
https://doc.scheer-pas.com/display/BRIDGE/HTTPS
https://doc.scheer-pas.com/display/BRIDGE/History+State
https://doc.scheer-pas.com/display/BRIDGE/Form+and+Form+Validation
https://doc.scheer-pas.com/display/BRIDGE/Calling+a+UI+from+external+Applications
https://doc.scheer-pas.com/display/BRIDGE/Calling+a+UI+from+external+Applications
https://doc.scheer-pas.com/display/BRIDGE/Usage+of+Choices
https://doc.scheer-pas.com/display/BRIDGE/Service+Calls
https://doc.scheer-pas.com/display/BRIDGE/HTTP+Proxy
https://doc.scheer-pas.com/display/BRIDGE/Controller+States
https://doc.scheer-pas.com/display/BRIDGE/Back+Button+and+Browser+History
https://doc.scheer-pas.com/display/BRIDGE/Back+Button+and+Browser+History
https://doc.scheer-pas.com/display/BRIDGE/Mock-Ups
https://doc.scheer-pas.com/download/attachments/2286600/UI.zip?version=4&modificationDate=1627663380000&api=v2

As the figure above shows, besides the described attribute, there are further attributes isLoggedIn
bound to the controller. The first three of them are specially stereotyped, and are displayed using a
distinct icon in the containment tree.

As the attribute the further controller attributes are populated after a successful isLoggedIn,
authentication via the service call. The attributes stereotyped , Login <<UIUserTokenTimestamp>> <<UI

 and will be used for authorization purposes. Details about authorization UserID>> <<UIUserToken>>
can be found in the following chapter .Authorization

The activity diagram defining the behaviour of the operation only assigns input and ouptut Login
parameters, and catches potential exceptions. The concrete implementation of the Login mechanism, e.
g. checking userID and password against a database, is done within a separate Builder model. This
model is called uiLibSecurityServices and offers its functionality to the uiAuthentication example as an
xUML library. This library represents the simple self-made authentication framework based on SQLite
that was mentioned in the introduction. For more information regarding uiLibSecurityServices please also
consider the chapter .Authorization

In case of a failed attempt to log in, the operation does not populate these attributes. The only attributes
populated in the presented example would be the attribute set to , and the attribute isLoggedIn false error
set to an individual text describing the error that occurred. In order to display this text to the user, the
error String also has a binding to a UI element: The caption that was initially set to "Please enter your
credentials" will display the error text in case of an unsuccessful log in attempt. The corresponding
binding is not shown in the figure above but can be seen in the example.

Authorization
Authorization within xUML User Interfaces is based on the . The example represents a Security Model
small web application showing comments posted by users. The figure below shows the UI state machine
diagram defining the user interfaces and transitions for this web application.

As illustrated in the state machine diagram above, users can view, add and delete comments.
Navigation between the different states is implemented using buttons and corresponding click events.
However, adding and deleting comments is reserved to certain user roles:

All users need to authenticate themselves by userID and password, using the login functionality
described in chapter .Authentication
Depending on the user's role, there are further functions available:

Guests can only view comments
Authors can view and add comments
Editors can view, add, and delete comments.

https://doc.scheer-pas.com/display/BRIDGE/Security+Model

These rights and restrictions are defined within the following use case diagram. The operations used as s
s in the UI State Machine (, ,) are placed within erviceCall getComments deleteComment addComment

a Secure Zone and assigned to user roles.

Following the interceptor pattern, whenever a user wants to access one of the operations within the
Secure Zone, the preprocessor is called to verify his authorization. The figure below shows the activity
diagram for the called preprocessor. As also described in the previous chapter about authentication, an
operation from the uiLibSecurityServices library is invoked here again:

The operation verifies whether the user who is logged in is allowed to access the desired SIauthorize
operation. Information about the logged in user originates from the UI state machine attributes that were
initialized during the login procedure (see also chapter). The attributes , Authentication userID userToken
and are passed on to the preprocessor within SOAP headers. This corresponds to the created
WebServiceSecurity Standard wssecurity2004. In the figure below, the source of the information and an
example for a resulting soap header is shown.

Within the SIauthorize operation, first the SOAP header information is extracted, as shown in the figure
below. Further on , the token is verified and roles assigned to the user are obtained. Please refer to the
example file uiLibSecurityServices.xml for more details.

When a user tries to access an operation without permission - e.g. a Guest tries to delete a comment -
the Security Service throws an exception. In the front end, this exception can be caught and shown to the
user following the UI error handling mechanism described in chapter . In the presented 8 Error Handling
example, an error message popup is shown to the user. Additionally the user has the option to provide
other credentials that might suffice to execute the operation. When leaving the error popup, the user is
transferred back to the UI state, where the exception had occurred, using the deep history state. The
figure below shows the complete UI State Machine diagram, composed of the login procedure, the states
to view, edit and delete comments, and the described error handling in the top right corner.

Advanced Controlling
Besides the authorization via the Security Interceptor model, in many cases it might make sense to adapt
a user interface behavior or its contents depending on a user's role. This can be done in two ways:

Firstly it can be modeled in the state machine, using choice states that route different users to distinct UI
states. The decisions within the guarded transitions can take any controller attribute into account.

Secondly it's also possible to adapt the template of a single user interface according to the logged in
user. Such modifications of the appearance of a user interface can be done using JavaScript. In the
presented example, a guest is not permitted to add comments. Besides the server side authorization that
prevents him of adding comments in any case, the button on the user interface is hidden from the user if
he is not an administrator. This is done by applying a script. The following figure shows the place where
this script is called.

The naming of the WS Security header attributes does not completely correspond to the naming of
the stereotyped UI state machine attributes. corresponds to ; <<UIUserID>> < >wsse:username <<U

 corresponds to and corresponds IUserToken>> < >wsse:password <<UIUserTokenTimestamp>>
to .< >wsu:created

Due to a MagicDraw limitation, it is currently not possible to model a transition from a choice state to
a history state.

https://doc.scheer-pas.com/display/BRIDGE/UI+Error+Handling
http://wsseusername
http://wssepassword
http://wsucreated

The script is contained in the operation in the UI State Machine, and accesses the showHideElements
attribute . The operation is located in the UI Controller.isAdminRole

Based on the value of the controller attribute isAdminRole, the addButton is hidden.

	Authentication and Authorization

