
Iterations
Another sometimes more elegant way of looping over arrays is using iterations. One can use iterations in
the following scenarios:

Iterating Over Action Scripts
Iterating Over Adapters
Iterating Over Class Operations
Iterating Over Call Behavior Action

Also, you have access to the index of the iterations as described at .Accessing the Iteration Index

Iterating Over Action Scripts
Figure: Iterating Over Action Scripts

The example above iterates over the Array . This Array has a complex type as addressList Address
arrayItem. The type is a class with the following definitions:Address

Within the action script the following output items of complex type are created:

On this Page:

Iterating Over Action Scripts
Iterating over
Action Script with
Complex Objects

Iterating Over Adapters
Iterating Over Class
Operations
Iterating Over Call
Behavior Action
Accessing the Iteration
Index

Example File (Builder project Basic Modeling/Flows):

<your example path>\Basic Modeling\Flows\uml\iteration.xml

https://doc.scheer-pas.com/download/attachments/2286600/Flows.zip?version=2&modificationDate=1587971354000&api=v2

At the end of each iteration the output Items are appended to the related output Arrrays.
To iterate over an action script, draw an Expansion Region with stereotype as shown in the <<iterative>>
above example.
Within the Expansion Region draw an action with the stereotype . This action contains <<Action Script>>
the action script. This script will be processed for each Array Element of the input Array. For each
Iteration a new item will be appended to each output Array. Within the action script the Array Items have
the given Attribute name defined in the Expansion Node. The Expansion Node therefore creates the
temporary input Array Items. The output objects need to be created by create statements within the
action script and are appended to the related output Array by the expansion node. Each expansion
region can have only one input Expansion Node and several output Expansion Nodes.

Figure: Iterating Over Action Scripts Expansion Node

For each Array Item of the input Array a new temporary object is created. This object gets the name from
the Expansion Node and the type taken from the tag " " of the input Array. You can use this arrayElement
variables into the action script.
Output expansions nodes can be drawn by selecting the symbol from the Output Expansion Node Obje

 pull-down menu in the diagram toolbar. The output objects need to be created within the action ct Node
script. The name is given by the name of the output Expansion Node. The type is taken from the tag "arra

" on the related output Array Element. For each iteration a new Array Item will be appended to yElement
the result Array.

To use an object static for all iterations, draw an Object Flow directly to the Action Script within the
Expansion Region. See as an example the object " " in the action script of the figure above. The counter c

 is static and will be added by 1 for each iteration ("set counter = counter + 1". The object contains ounter
at the end the number of processed addresses.

Iterating over Action Script with Complex Objects

Instead of an Array it is also possible to iterate over a dependency in a complex object with a multiplicity.

Figure: Iteration over Action Script of Complex Objects

The result objects like , , and need to be created first with the smallAddress country addressString
create statement.

To declare the multiplicity where the iteration should loop over, define a statement on the Select
ObjectFlow. The ObjectFlow from Complex Object to the Expansion Node needs the stereotype Transfor

. If the Stereotype is set, the symbol is shown in your activity diagram.mation Transformation
Enter the menu by double click on the symbol or selecting the menu out of the context Specification
menu.

Figure: Transformation Menu

Insert the name of the association in the field . Select
To append the output of an iteration to a complex type object, define an Array Element and append it to
the complex type object by an additional ActionScript. See Example above. The Array is addressList
copied to the class by the Action Script.Customer

Iterating Over Adapters
Iterations over adapters (in the following example an SQL adapter) can be executed with the Expansion
Region like iterations over Action Script. Inside the Expansion Region just draw an adapter instead of the
Action Script.

Figure: Iterating over Adapter

Within the Expansion Region with the stereotype you can draw any E2E Bridge Adapters, <<iterative>>
in this Example an . The Expansion Region allows one input Array and several output SQL Adapter
Arrays. It loops over the input Array and uses internally the temporary variable given in the Expansion
Node. If the name of the Expansion Node corresponds to the parameter of the adapter, any Object Flow
within the Expansion Regions are optional. The iteration over Adapter also supports input and output
Pins on the Adapter. This means you can do a mapping between the temporary variable name given in
the Expansion Node and the input Pin of the Adapter (see example above). Any Static Variable that has
to be available for all iterations can directly be attached by an Object Flow into the Adapter. For this
purpose no Expansion Nodes are used. The Object Flow can be directly connected to the Adapter or by
input Pin. Like in the Example "Iterate Over Action Script" any output variables must be created by the
adapter. The Output Variable must be named by an output Expansion Node on the frame of the
Expansion Region. It will then append an item in the associated Array Item. With the usage of output
Pins on the adapter a mapping to a different name of the temporary Array Item is possible.

Iterating Over Class Operations
Iterations over Class Operations are similar to other iterations. The service iterates over an array and
executes for each item of the array the defined class operation. In this example it modifies the attribute A

 on each by inserting the value " ".DDRESSTYPE address CHANGED

Figure: Used Class Operation

To iterate over a Class Operation, draw a "Call Operation" symbol within the Expansion Region.
Therefore, drag and drop the class operation from the Containment Tree into the Expansion Region or
draw the symbol for a "Call Operation Action" in the Expansion Region. After you drop the symbol in the
expansion region, you have to select the linked operation out of the pop up menu "Select
Operation". The name of the selected operation is shown in the symbol.

Figure: Iterate Over Class Operation

When defining SQL statements of an action state, the E2E Action Script Editor cannot be used. The
MagicDraw action specification dialog has to be used instead.

To link the Call Action to the right Class Instance define an input Pin on the Call Operation Action with
the name " ". Draw an Object Flow from the Object Instance in your Activity Diagram to the input target
Pin " ".target
For any other input and output parameter of the Class Operation use Expansion Nodes on the Expansion
Region. The Expansion Node must have the parameter name for the class Operation or be mapped by
an object flow to an input Pin with the parameter name of the class operation.

Iterating Over Call Behavior Action
The following example shows how to extract each single item of the array . Each single addressList addr

 object is passed as input to the subactivity (activity diagram). The object ess Modify Address changedA
 is the output of each cycle and is appended to the array .ddress changedAddressList

Figure: Iterating over Subactivities

Draw in your activity diagram an Expansion Node. If the Subactivity already exists as Action with an
Activity Diagram, you can select the Activity Diagram out of the Containment Tree and drop it in the
Expansion Region. For a new Subactivity, draw an "Any Action" symbol with the Action Metaclass "Call

. Select the new symbol and select New Activity Diagram in the context menu. Define Behaviour Action"
the Package for the new diagram and push the button Create Owner in the Create Diagram menu. A list
opens. Select and give the activity a name. Push and the new activity diagrams opens.Activity Ok

Figure: Executed Subactivity of each Iteration

One input Array is allowed and any output Arrays. The parameter for the subactivity must be defined as
Expansion Node. The name has to be the used parameter name within the subactivity (in the address
examples above). Any output Parameter has to be defined as output Expansion Node with the used
name out of the subactivity. Like in the other iterations a mapping by input / output Pins is possible.

Accessing the Iteration Index
For all above mentioned usages of iterations, you can access the index value of the iteration. To do that,
define an input node to the expansion region that

is of type Integer
has no incoming object flows

Such input nodes will be treated as indices by the Runtime. These indices are zero-based, and you can
have as many as you need. The sample activity snipped below shows a simple index usage.

	Iterations

