
Load Balancing
Service clients may create heavy load for service providers depending on the number of parallel running
clients. A common way of distributing this load is using more than one node to host the services. Then, a
load balancer will distribute the load among the identical services.The figure below depicts a scenario
involving two servers and an external load balancer, for instance a hardware appliance. On each node,
there is an independent Bridge installation. Each Bridge installation leads to two operating system
services (Windows services, Unix daemons):

E2E Console service: This service governs all deployed services (= online services) and also
the E2E Proxy.
E2E Proxy service: This is an Apache reverse proxy, configured and started/stopped via the
Bridge.

From an administration point of view, the E2E Console service is the only service that must be monitored
and started by the operating system and possibly monitored by an external console such as HP Open
View.

When a service is deployed on a server node, the Bridge starts an xUML Runtime instance executing this
service as an operating system process and starts monitoring this service (see Monitoring Load

). The deployed service (= repository) is stored in the directory. Balanced Nodes E2E_BRIDGE_DATA
Since both server installations on both nodes are independent of each other, each service repository
must be deployed on both nodes separately. This approach has the benefit that it is possible to update
services on the fly by directing the load balancer to one node while updating the other node with a new
service version. This way, the service is online all the time without any interruption. However, the
drawback of this approach is that all deployments must be done twice.
If the services hold state either by using E2E Persistent State objects or by sharing persistent data, the
data should be put into a shared external database. Of course, this makes this database a single point of
failure. However, this is a common scenario most operation departments are used to.

As identical services are concurrently running, all write operations of the same services must use
resources being safe of concurrent write operations. This is guaranteed by databases, message queues,
and SOAP/HTTP services, etc. However, in general it applies not to file systems or (s)ftp. For such non-
save resources, the modeler has to provide its own co-ordination mechanism, for example by a
persistent state object controlling the access of the shared resource by the concurrent services. In the
following figure, non-save resources are flagged with a warning sign. We recommend not using non-save
backends at all in a load balanced set up.

Though this is not always feasible, in many use cases it makes sense to use the load balancing
architecture for online services, but another configuration for batch processes that typically have to
access files and file protocols (ftp, sftp, ftps, ...). This use case is discussed on .Batch Processing
A big advantage of a pure load balanced approach is that the Bridge processes do not hold any state.
This implies that this approach scales very well and does not require any special load balancing features
(even simple DNS round robin works quite well).

Figure: Two Servers and an External Load Balancer

File System Setup
The file system contains two directories on each machine:

E2E_BRIDGE_PROG: It contains all binaries for the Bridge. Read only access at runtime. It is
updated only for patches and upgrades (see).BRIDGE Installation Guide
E2E_BRIDGE_DATA: This folder contains all deployed service repositories, service settings,
and service log files; all Bridge data such as users, roles, groups, and server domain nodes;
environment settings (e.g. , ...); all Apache proxy configurations, and the proxy ORACLE_HOME
logs.

On this Page:

File System Setup
Maintenance
Monitoring Load Balanced
Nodes
Load Balanced Persistent
State

Related Pages:

Batch Processing
BRIDGE Installation Guide
Monitoring Node Instances
Monitoring
Persistent State Ownership

https://doc.scheer-pas.com/display/BRIDGE/Batch+Processing
https://doc.scheer-pas.com/display/INSTALLATION/BRIDGE+Installation+Guide
https://doc.scheer-pas.com/display/BRIDGE/Batch+Processing
https://doc.scheer-pas.com/display/INSTALLATION/BRIDGE+Installation+Guide
https://doc.scheer-pas.com/display/BRIDGE/Monitoring+Node+Instances
https://doc.scheer-pas.com/display/BRIDGE/Monitoring
https://doc.scheer-pas.com/display/BRIDGE/Persistent+State+Ownership

1.
2.

3.
4.
5.

6.

Maintenance
When maintaining one node, following steps must be taken:

The load balancer has to direct all new requests to one node.
After that, the node to be maintained can be shut down. This is done by stopping the OS
services and . The shutdown of the Console process triggers the shut E2E Proxy E2E Console
down of all deployed services. Each service being shut down will wait until it finishes the current
request.

Do the maintenance work and all tests being required.
Re-deploy services that changed while maintaining the node – if necessary.
Start the Console service/daemon and then all required services (for those not having set the Au

 flag).tomatic Startup
Tell the load balancer to balance the load again.

Additionally, it is important that operators monitor the Console service/daemon, because if it is dead, no
management and monitoring of the online services will take place.

Monitoring Load Balanced Nodes
The Bridge monitors all deployed services. If a service writes a log entry of type ERROR or FATAL, or if
a service terminates unexpectedly (crashes), the Bridge can call a monitoring service with all information
found in the log file.
A monitoring service is a plain SOAP service implementing a given interface whose URL is registered at
the Bridge (details see). Building monitoring services is on pp.Monitoring Node Instances Monitoring

Actually, the Bridge may register two URLs, the primary and the backup monitoring service. If the primary
monitor fails, the backup will take over. In the load balancing scenario, the monitoring services on each
node backup each other typically.

Figure: Monitoring Load Balanced Nodes

Load Balanced Persistent State
To setup a load balanced persistent state engine, you need to do the following:

Deploy the same persistent state service multiple times with a shared persistent state
owner name.
You can either deploy the same service to divergent Bridges, or deploy the same service to the
same Bridge under a different name. In the latter case, you need to assign the same owner
name to both services, so they can share persistent state objects (see picture below). The
owner name of a persistent state service can be changed in the persistent state settings of a

.service

If one of the services cannot be properly shut down because of - for example - a hanging
database connection, this process must be killed using the Bridge.

All online services should be managed by the Bridge. It is technically possible to start and stop all
online services by using OS scripts. However, the Bridge is the only entity that knows if services are
newly deployed or deleted. External tools do not. So, if starting up or shutting down the services (via

 flag) is to happen automatically, the operator should start/stop the E2E Console Automatic Startup
services/daemon only.

https://doc.scheer-pas.com/display/BRIDGE/Monitoring+Node+Instances
https://doc.scheer-pas.com/display/BRIDGE/Monitoring
https://doc.scheer-pas.com/display/BRIDGE/xUML+Service+Settings
https://doc.scheer-pas.com/display/BRIDGE/xUML+Service+Settings

Setup the services to share the same external persistent state database.
You need to setup the persistent state components for an external storage medium (see Persiste

) and all services should use a matching database connection string.nt State Components

Both services will create and process their own objects. These objects are identified not only by their
primary persistent state key, but also by an owner name and owner id reflecting the actual service that

 owns these objects.
However, each service will be able to list and send signals to objects owned by the other service (having
the same owner name).

The redundant Service A with owner ID 7 can take over the processing of the persistent state objects, but
will not do this automatically. To enable Service A with owner ID 7 to identify the persistent state objects
to process, you need to change the owner ID of the objects from 9 to 7 in this case.
This can be done on the tab of the Bridge with button , see Persistent State Manage Ownership Persiste

.nt State Ownership

Besides changing the owner ID of a redundant service to trigger processing of the stalled objects again,
you can do the following:

Restart the stopped service.
Transfer the service to another Bridge (e.g. by and).service export re-deployment
In this case, you also need to transfer file from the service directory (<your PersistentState.tab
Bridge data directory>/<service directory>) to the new location. This file contains the actual
owner ID of the service. If not present, a new owner ID will be assigned and all objects with the
old owner ID will still be stalled.

If one of the services (e.g. Service A with owner ID 9) is stopped, all objects with owner ID 9 will not
be processed anymore (transitions, do activities).
But:

All objects will still be visible for other services.
All objects will still be ready to receive signals. The signals will not be processed, however,
but queued for later processing.

https://doc.scheer-pas.com/display/BRIDGE/Persistent+State+Components
https://doc.scheer-pas.com/display/BRIDGE/Persistent+State+Components
https://doc.scheer-pas.com/display/BRIDGE/Persistent+State+Ownership
https://doc.scheer-pas.com/display/BRIDGE/Persistent+State+Ownership
https://doc.scheer-pas.com/display/BRIDGE/xUML+Service+Details#xUMLServiceDetails-ExportingaService
https://doc.scheer-pas.com/display/BRIDGE/Deployment+of+xUML+Services

	Load Balancing

