
Implementing the Currency Conversion
The next step is to implement the behavior of the third action . You will Calculate Total and Currencies
start with the implementation of the currency conversion.

The activity diagram will contain all activities to perform a currency calculation for each Calculations
product record found in the filtered XML data and to calculate a total of all product prices as shown in the
picture below.

Open the
activity
diagram Calcu

 in the lations
diagram pane.

Implementing Additional Calculations

On this Page:

Calling the SOAP Service
Checking the Search Result
Converting the Price from
USD to CHF

https://doc.scheer-pas.com/display/ACADEMY/Implementing+Additional+Calculations+MD18
https://doc.scheer-pas.com/display/ACADEMY/Implementing+Additional+Calculations+MD18

Draw an initial
node and
assign the
name .Start

Calling the SOAP Service
Within this activity, you are going to iterate over all collected in the prior activities and filteredProducts
process each product. Before implementing this, you have to check wether any matching products were
found at all within the filtering activities. In the case that no product from file matched the catalog.xml
entered keywords, the activity has to return an empty result and no further calculations will Calculations
be done.

First, create
an action
below the
activity start
and assign
the name Cre

.ate Output

Connect the
action node
with the inital
node.

The output
created will
be of type Sea

. rchResult
Draw a
central buffer
node next to
action node Cr

.eate Output

Click into the
buffer node
and type
searchResul
t :
SearchResul
t.

This assigns
the name sear

 and chResult
the type Searc

 to hResult
the buffer
node.
The searchRe

 will be sult
buffered until
it is
complemented
within this
activity.

Finish the
definition by
pressing .Enter

Select the
action node Cr

 eate Output
again and
press - Ctrl En

 to open ter
the Action
Script Editor.

Create the
object search

 as Result
shown in the
screenshot on
the left.

Click or OK
press - Ctrl En

 again to ter
close the
Action Script
Editor.

Draw an
object flow
from Create

 to the Output
buffer node se

.archResult

Drag and
drop the
parameter filte

 redProducts
on the
diagram
border of Calc

.ulations

You are going to check now, wether there is any input data to process.

Select the
action node Cr

 eate Output
and choose
the control

flow icon
from the
smart
manipulation
bar.

Instead of left-
clicking to
position the
action node,
click the right
mouse button.
Select Decision
from the
context menu
to insert a
decision node.

Assign the
name CheckE

 and mpty
draw an
object flow
from the input
parameter filte

 redProducts
to CheckEmpty
.

If the input parameter does not contain valid product information, the calculations will filteredProducts
not be proceeded, but the control flow will directly come to an end.

Choose Contr
 from ol Flow

the decison
nodes smart
manipulation
toolbar. Below
the buffer
node insert an
activity final
node (right-
click) and
assign the
name EndEm

.pty

Double-click
the control
flow coming
from the
decision Chec

 and kEmpty
enter the
name empty
in the Specific

 dialog.ation

Insert else
as a guard
expression.

The effective guard expression will be added to the continuing control flow. Keep this in mind, as first you
are now going to reuse the previously copied operation from class .CurrencyCalculator

Drag and drop the operation from class onto the diagram pane.getExchangeRate CurrencyCalculator

This will draw the action node together with all necessary
input and output pins.

Delete the unnecessary target pin, rearrange the input
and output pins and draw a control flow from CheckEmpty
to .getExchangeRate

Now remember to enter the guard expression on this
control flow. Select it and start typing the name .not empty

As you are going to enter a complex guard expression,
press - to use the support of the Action Script Ctrl Enter
Editor and enter the following expression:

filteredProducts.exists() and
filteredProducts.products.count() > 0

If the parameter is existing and filteredProducts
contains a number of products greater than 0, this path of
the decision will be followed.

Remember, that the path has been defined as to else
end in an activity final.

Your activity diagram now should look as follows.

All product prices are in currency USD and are to be converted into CHF. Because of that fact, the
exchange rate only has to be get once and you are going to replace the input pins by value pins. A value
pin is an input pin that provides a value to an action that does not come from an incoming object flow
edge.

Right-click the
input pin from

.Currency

Choose Refac
tor > Convert
To > Value

 from the Pin
context menu.

Note that the
symbol of the
pin fromCurre

 on the ncy
diagram pane
has changed.

Open the Spe
 cification

dialog of the
value pin.

In the Value
field enter USD
and click Close
.

Now the value
is displayed
on the
diagram pane
instead of the
pin's name.

Now convert the second input pin into a value pin and assign the value .toCurrency CHF

Save the UML model.

Checking the Search Result
After calling the SOAP adapter, you have to decide, whether you got a valid response from the Exchange
Rate Provider.

Insert a Decisi
 and on Node

assign the
name CheckV

.alid

As an input,
the decision
node needs
the flag validR

.equest

Draw the
necessary
object flow.

When the
SOAP
request was
not valid, you
can not
continue with
the
calculations.

Draw an Activ
 ity Final

named EndNo
.tValid

When the
SOAP
request was
valid, you will
transfer the
exchange rate
to the output
parameters
and continue
with the
calculations.

Draw a
control flow
that ends in
an action
node.

Now, you
have to define
the guard
expressions.

Double-click
the control
flow that
leads down to
open the Spec

 ification
dialog. Assign
the name is

 and valid
enter the
guard
expression val

.idRequest

Click .Close

Double-click
the other
control flow
which leads to

. EndNotValid
Assign the
name is not

 and valid
enter the
guard
expression else
.

Click .Close

As it concerns a variable of type boolean, the expression is equal to the expression validRequest va
.lidRequest = true

If the request of the external SOAP service was valid, the calculations are proceeded. If not, all further
calculations are skipped.

Now, continue with the calculations. To the unnamed action node assign the name Move Exchange
.Rate to Output

As the
exchange rate
will be moved
to output, you
need the
exchange rate
as an input to
the action
node.

Draw the
appropriate
object flow.

The object will be used within this action node and is therefore needed as an input. To searchResult
avoid crossing control and object flows which reduce comprehensibility of the diagram, you will not
directly connect the buffer node created in to the action node searchResult Creating Output Move

.Exchange Rate to Output

You are going to copy the buffer node on the left of action node searchResult Move Exchange Rate to
.Output

But first, make some room in your diagram. Press to switch to full screen mode.F11

The MagicDraw menu bar disappears, the containment tree and the Compiler window are toggled to auto-
hide mode to the benefit of the diagram pane, which expands to the full screen.

Select all
diagram
elements
beside the
parameter filte

 redProducts
by drawing a
selection area.

All selected
elements are
marked with
black
rectangles.

Move the
selection a
little to the
right.

If you drag
the selection
area over the
diagram
border, the
diagram
border will
move
accordingly.

Close Full
Screen mode.

You can do
this by
clicking the
appropriate
button in the
upper left
corner.

The button
may be
displayed in a
separate
window also.

The third
possibility to
close Full
Screen mode
is pressing F11
again.

In the
containment
tree, select
the buffer
node searchR

.esult

Drop it next to
the action Mov
e Exchange
Rate to

.Output

Connect the buffer node to the action node.

Select the
action node M
ove
Exchange
Rate to

 again Output
and press Ctrl
- to Enter
open the Acti
on Script

.Editor

Enter the
statement
shown in the
screenshot on
the left. The
value of the
output
parameter exc
hangeRateCH

 is FUSD
copied to the
attribute exch

 of angeRate
the object sea

.rchResult

Close the
dialog.

The action node is completed.

Save the UML model.

Converting the Price from USD to CHF
In the next step, the price conversion from USD to CHF is done for each product record found in the
filtered data. The filtered products are stored in object , which you need as an input filteredProducts
parameter. You will define an UML iteration to iterate each product record and execute specific actions.

E2E Builder provides functionality to iterate over action script, an adapter, a class operation or over a call
behavior action. In this lesson, you will learn how to iterate over an action script as shown in the picture
below.

Iterations are defined by the use of expansion regions with stereotype .<<iterative>>

Select an Exp
ansion

 from Region
the diagram
toolbar and
place it on the
diagram pane.

The
expansion
region is
drawn with an
Expansion

 in the Node
upper left
corner (

).

An object flow
that arrives at
an expansion
node contains
a collection of
objects or
data, which
are separated
by the
expansion
node before
being passed
onto elements
within the
expansion
region

An expansion
region must
have one or
more
expansion
nodes
receiving
input. You
can iterate
over only one
of the input
nodes.
It may have
any number
of expansion
nodes as
output
including the
case of
having no
output
expansion
node.

Scroll down if
necessary
and resize the
expansion
region.
Toggling to
Full Screen
mode may be
helpful as well.

Connect the
expansion
region to the
control flow.

Draw the
object flow
from the
activity
parameter
node filteredP

 to roducts
the expansion
node as
shown in the
picture on the
left.

Open the Exp
'ansion Node

s Specification
dialog and
assign the
name product
and the type P

.roduct

The element p
 is roduct

used as a
temporary
iteration
object. In
each iteration,
a product
record is
stored in this
object.

Click .Close

The object of filteredProducts
type has an array Catalog
attribute that contains products
elements of type .Product

In each iteration, one element of
the array will be products
assigned to the temporary iteration
object .product

In order to pass an element of the array of to the iteration object , products filteredProducts product
you can use a .Transformation

Right-click the
object flow
connecting
the activity
parameter
node with the
expansion
node and
select Transfo

 from rmation
the context
menu.

This
stereotypes
the object
flow as
transformation
and adds the
corresponding

icon .

Double-click
this icon to
open the Spec

 ification
dialog of the T
ransformation
.

In the Select
field, enter fi
lteredProdu
cts.

 products
and close the
dialog.

To avoid
typing errors,
you could
also use the A
ction Script

 for this.Editor

The
transformation
rule is
displayed in
the diagram.

Now, define the result of each iteration step.

Create an Out
put
Expansion

 by Node
selecting the
corresponding
icon from the
smart
manipulation
toolbar of the
expansion
region.

Drag the
output
expansion
node to the
bottom of the
expansion
region.

The
calculated
price in CHF
is no attribute
of class Produ

, as ct Product
describes the
structure of
the XML file.

For storing
the price in
CHF, you
defined the
class Product

 Extended
with all
attributes of Pr

 and the oduct
additional
attribute price

. This CHF
type, you are
going to use
for the output
expansion
node.

Open the Spe
 cification

dialog of the
output
expansion
node. Assign
the name exte

 ndedProduct
and the type P
roductExtend

.ed

Click .Close

The result of
each iteration
step has to be
stored in an
array.

Draw an
object flow
starting at the
output
expansion
node and
ending in a
central buffer
node. Assign
the name exte
ndedProducts
.

Open the Spe
 cification

dialog of exte
ndedProducts
.

Apply the
stereotype <<

 E2EArray>>
and assign
the type .Array

The array
element type
is defined in
field Array

. Element
Each array
element has
to be of type P
roductExtend

. Select the ed
corresponding
type from the
list.

Click .Close

Now, you have defined the input and the output of the expansion region. The purpose of this iteration is
to iterate over an action, which calculates the CHF price for each item.products

To add an
action node to
the expansion
region, select
the Action
icon from the
diagram
toolbar and
place it within
the expansion
region.

Assign the
name Calcula

.te CHF Prices

The action
node Calculat

 e CHF Prices
needs the
exchange rate
as input to do
the
calculation.

Therefore,
draw an
object flow
from the
output pin exc
hangeRateCH

 of FUSD getE
 xchangeRate

directly to the
action node C
alculate CHF

.Prices

Connect the
input and
output
expansion
nodes to the
action node
as well.

This action will contain the action script being processed for each array element of the input array. As a
result of each iteration step, a new item will be appended to the output array.
Within the action script, the array items have the attribute name defined in the input expansion node. The
expansion node creates temporary input array items. The output objects need to be created by create
statements within the action script and are appended to the related output array by the output expansion
node.

Select Calcula
te CHF Prices
and open the
Action Script
editor.

First, create
object extend

, edProduct
that you need
to store the
calculated
data.

Move all
product data
from the input
object product
to the output
object produc

, tExtended
using set
statements.

set extendedProduct.category = product.category;
set extendedProduct.link = product.link;
set extendedProduct.manufacturer = product.manufacturer;
set extendedProduct.priceUSD = product.priceUSD;
set extendedProduct.seller = product.seller;
set extendedProduct.title = product.title;
set extendedProduct.type = product.type;

Finally, your are going to implement the calculation of the CHF price. You will use the class operation cal
 you defined in class .culatePrice CurrencyCaluclator

Remember, that you made it available to be used within action script via a <<use>> dependency called u
.seCurrencyCalculator

Start typing
the set-
statement set
extendedPro
duct.

 priceCHF =
and press Ctrl
- to Space
display the
suggestion list.

Select the
<<use>>
dependency u
seCurrencyC

.alculator

Type and :
the available
methods will
be displayed
in the
suggestion
list.
Select calcula

.tePrice

Enter the two
needed
parameters pr
oduct.

 priceUSD
and exchang
eRateCHFUSD
within the
brackets.

Finalize the
statement by
typing if
product.
priceUSD.

 exists();
as the
currency
calculation
only should
be executed if
a price is
assigned to
the product.

The last statement in total should read:

set extendedProduct.priceCHF = useCurrencyCalculator:calculatePrice
(product.priceUSD,exchangeRateCHFUSD)
 if product.priceUSD.exists();

Save the UML model.

	Implementing the Currency Conversion

