Filtering the File Content MD18

) oo e Vb) senes | componars | comptin Tt

You will now implement a search mechanism to search the product catalog file catalog.xml.

Drawing the Activity Diagram Filter File Content Components

Open the activity diagram Filter File Content. It will contain all activities to filter the content of the XML]
file according to the search parameters. On this Page:

The finalized activity diagram will look as shown below.

® Drawing the Activity
Diagram Filter File Content
® Creating Keyword Patterns
© Decision Nodes
© Arrays
© Collecting Non-
Empty Keywords

activity Activity Diagram Filter File Gontent[[5] Fiter File Content]

- start

userinput| Create a Pattern of Keywords :
userinput : SearchParameters Create Keywords Pattern a

© Counting
KewordsPattern Elements of the
Array
o Creating an
allpmduanmm filteredProducts : Catalog Empty Pattern

© Second Branch of
the Decision Node
O Setting the
Keyword Pattern
O : A © Finalizing the
End Keywords Pattern
® Filtering the Content

Lonizk a a "; In the
'S’;?DEE 2 containment
étlaﬂ‘im —) tree, select Qu
Base Components [E2E Bridge Base.xml
B Base Types [E2E Bridge Base.xm] eryProductsP
[Companent View
5B Overview ortType and
g Process Trading [E2E Process Tracing.xm] create the
£1-B3 Services L
£ GetProductservice new activity
E-F3 QueryProductsServi .
SEE diagram Creat
BB Parts e Keywords
[SR@)ouervProductsPortTvoe |
Create Element Pattern.

Create Diagram

J| Class Diagram

Create Relation

Activity Diagram

Specification State Machine Diagram

GoTo

Sequence Disgram

& Select in Inheritance Tree Analysis Diagrams 3

20 ST N T2 5 s 1o O DBGBNNS s s soses o o s

https://doc.scheer-pas.com/display/ACADEMY/Components+Lesson+3.1+MD18
https://doc.scheer-pas.com/display/ACADEMY/Components+Lesson+3.1+MD18

Ep Base Components [E2E Bridge Base. xmi]
Ep Base Types [E2E Bridge Base.xml]
F5 Component View
£ Owerview
: Eg Process Tracing [E2E Process Tracing. xmi]
BB Services
ﬁ GetProductService
E|E| QueryProductsService
BB Classes
BB Ports
= QueryProductsPortType

- {3 +gueryProducts(userInput : Services::QueryPr
E}Q Create Keywords Pattern(userInput : SearchPa
ot keywordsPattern : Base Types::String
&0 userInput : Services::QueryProductsService]
@ Create Keywords Pattern
- @ in userInput : Services::QueryProductsSery
o
23 Filter File Content{ userInput : SearchParamete
-3 Query Products(userInput : SearchParameters
[t Read XML File(allProducts : Catalog)

€ >

activity Activity Diagram Filter File Content] @ Filter File Cnnlentu

Start

End

Add the
necessary
parameters to
the activity:

® userinput

SearchP
arameters
(direction
in)

® keyword
sPattern
: String (
out)

Return to the
activity
diagram Filter
File Content:
Add an inital
node Start
and an
activity final
node End.

(‘activity Activity Diagram Filter File Content] [Fitter File Camenty

Start

userinput | Create a Pattern of Keywords :
— Create Keywords Pattern |-|-| N

End

\

" WkeywordsPatiern

/ar.lwity Activity Diagram Filter File Content] @ Filter File Cnnlemu

Start

- -usertnput Create a Pattern of Keywords :
B Create Keywords Pattern |\|-|

Filter File Content

End

keywordsPattern

Drag and
drop the
activity Create
Keywords
Pattern on
the diagram.

Open the
specification
dialog of the
action node
and assign
the name Cre
ate a Pattern
of Keywords.

Move the
input pin userl
nput on the
left side of the
action node
and the
output pin key
wordsPattern
on the right
side.

Add another
action node to
the diagram
and name it Fi
Iter File
Content.

Draw the
control flow.

Containment o 0 X
B Y7 Q % -
El-[=] Data

By Aliases

B Base Components [E2E Bridge Base. xmi]
: -[Bp Base Types [E2E Bridge Base.xml]
-B9 Component View
-] Owerview
m Process Tracng [E2E Process Tradng. xml]
BB Services

E| GetProductService

E|E| QueryProductsService

--E Classes
E}E Ports
= QueryProductsPartType

3 +queryProducts(userInput : Services::Quer
&) Create Keywords Pattern(userInput ; Searg
E}-e3, Filter File Content(userInput : SearchParam
B Relations
- i Start
@ End
-] allProducts : Services::QueryProductsSe
-t filteredProducts : Services:: QueryProdu
-0 userInput @ Services::QueryProductsSer
[~ Create a Pattern of Keywords:Create Kg
-3 Filter File Content
[Filter File Content
B Win userInput : Services::QueryProdu
- 3 itgElProducts @ Services:: QueryProducts
- {3 out filteredProducts : Services::QueryPr
B4 Query Products{ userInput : SearchParamet|
(-3 Read XML File(allProducts : Catalog)

activity Activity Diagram Filter File Content[(] Fitter File Content 1]

Start

" ysernput[Create a Pattern of Keywords :
userlnput: SearchFarameters Create Keywords Pattern ol

keywordsPattern

allProducts : Catalog - Filter File Content fiiteredProducts : Catalog

End

Save H the UML model.

Creating Keyword Patterns

To finish the
diagram, the
necessary
parameters
have to be
added to the
diagram.

Select them in
the
containment
tree and...

... drag and
drop the input
parameters
on the left
side of the
diagram
border, the
output
parameter on
the right side
and finish the
diagram by
drawing the
necessary
object flows.

In the next step, you will draw the activity diagram that addresses the keywords search. Requesting the
service, the user may fill in no, some, or all keywords in the search mask. Upon this input you have to
decide what has to be done next. This decision will be modeled with a decision node. If no keyword has
been entered, all rows will be selected. If one or more keywords have been entered, a row will be

selected if at least one of the keywords matches the title.

You will create an internal array object keywordsArray, which will contain all keywords the user has
entered in the search mask. If the number of array elements is zero, you will create a string object called
keywordsPattern that does not contain any keywords. Otherwise, you will assign a value to this string
object that contains all given keywords within regular expressions. The string keywordsPattern will be

used for filtering the rows later.

Regular expressions are used to find search patterns in a string. You will use this technique in this
example to find keywords in the field title of each product record. This will be all implemented in the
activity Create a Pattern of Keywords.

Create a new behavior activity diagram Create Keywords Pattern in the package QueryProductsPortT
ype and assign it to the action node Create a Pattern of Keywords. Double-click the action node to
open the empty activity diagram.

First, you will outline all actions of the activity diagram.

1. First, you filter out all empty keywords. The result is stored in an array.

2. In the decision node, the number of keywords in the array is evaluated.

3. If the array is empty, an empty pattern is created. No further action is executed.

4. If the array is not empty, another pattern is defined using the keywords in the array in the

following two actions.
TrCV A imERES YRONY LA NERY RO QAQo% v
(actvity Actvity Dagram Greate Keywards Paern] (] Ceate Kepwords Patem 1]
@

Create the outline of the activity diagram as shown in the picture above.

Element Name Type Direction
Initial and final activity node Start and End
Action nodes Collect Non-Empty Keywords

Set Keywords Pattern
Finalize Keywords Pattern

Create Empty Pattern

Decision node CheckEmpty (see below on how to draw a

decision node)

Input parameter userlnput SearchPara | in
(stores the search parameters meters
passed from the client)

Output parameter keywordsPattern String (base | out
type)
Central buffer nodes keywordsArray (see section below on Array (base
how to define an array) type)
keywordsPattern String (base
type)

Draw all control and object flows as shown in the screenshot.

Decision Nodes

=] = =] x| v

P A w7 ImY Y T i L A st BERY QQQQu0s v
B

Earess actviy &)
DI P] "
£ Connon s
Y =
s Textzox S
B e
7 Dependency T
5 imsge shape } (oo et)
2 Diagram Overview |
=/ Diagram Legend |
- Horzoal Separater + " . . N

|

|

|

|

|

|

|

|

|

I

|

I

|

|

|

|

|

|

|

|

|

I

T

(5] Actwity Diagram
© Action ~
Clovectrode °
3 Obictlow
N, Control o
[Send Signal Acton
] Aceptevent acten
X Time Event
o tntanade
covty sl

scepton Hander
() BomsonRegon
of reuten o

Specification of Decision Node properties
Specify properties of the selected Decision Mode in the properties
specdification table. Choose the Expert or All options from the Properties
drop-down list to see more properties.

= 2 CheckEmpty

o tationH 2= 8 B B she Properties: |Standard
ocumentation,
Usage in Diagram El Decision Node
Inner Elements D ChEdEmPWl [l
Relations Owner 3 Create Keywords Pattern{u...
Tags Applied Stereotype
Constraints
Traceability To Do
Hame

The name of the NamedElement.

Arrays

In the
decision
node, you
need to
decide
whether the
keywords
array from
parameter use
rinput is
empty.

Select a Decis
ion icon from
the diagram
toolbar and
place it on the
activity
diagram.

Double-click it
to open the
Decision
Node
specification
dialog and
assign the
name CheckE

mpty.

The object keywordsArray is an array, which can contain an unlimited number of String elements. If an
array is drawn in the activity diagram, you always need to define the type of its array elements.

Specification of Central Buffer Node properties

Spedify properties of the selected Central Buffer Node in the properties
spedification table, Choose the Expert or All options from the Properties
drop-down list to see more properties,

B % 2 keywordsArray

W 2 BE BY abc Properties: | Standard v

Documentation/Hyg

Usage in Diagrams B E2EArray

Inner Elements Name keywardsArray

Relations Applied Stereotype «» E2EArray [ObjectFlow, ObjectM|
Tags Type E Array [Base Types]

Constraints

Traceability ToDao

Documentation

s T = 5 - 7]

Array Element

Double-click
the object key
wordsArray
to open its
specification
dialog. Set
the Type to Ar
ray, which is
a base type.

Each array
must be
stereotyped
as an array.
Select the
stereotype E2
EArray in the
Applied
Stereotype
field.

Setting this stereotype, the new field Array Element is displayed. Define the base type String as type of

the array elements.

«E2EATays The type of the array elements is visible now in the second line of
the object node.

keywordsArray : Array
{arrayElerment = String}

Collecting Non-Empty Keywords

Open the Action Script Editor for action Collect Non-Empty Keywords and define the action script to
process the five keywords passed from the client.

acity Acivity Dagram Gresa I e

File Edit View Code Global Ops te Empty Pattern

Collect Non-Empty Keywords. k23

keywordsPatiern String

Pt © O [[JvatchCase [JRepeats

Action Script of Collect Non-Empty Keywords

create keywordsArray;
set keywordsArray = sel ect each from userlnput. keywords where el enent !=

Arrays always need to be created with the create statement.

When typing the select keyword followed by a blank, the statement will be completed except the
object and the condition in the where clause.

The operation sel ect each from processes every element of array keywords, which is an attribute
of input object userinput.

By defining the condition where el enent ! = "", the operation only considers keyword fields, which
the user did not leave empty in the search mask (read: array element that does not equal an empty
string). All keywords that are found in the array keywords and match the condition will be copied to the
array keywordsArray.

Counting Elements of the Array

If no keywords are passed, the flow branches from the decision node CheckEmpty to the right. As you
copied all keyword fields which have not been empty from the input object userinput to the array object k
eywordsArray, you can now count all elements. If the array has no elements the flow will branch to the
right.

Double-click the control flow that branches to the right. Name the control flow empty and enter the
following condition in the Guard field.

8] 5] x
P b h T mERER LBONN AL A [EERe aeaams .

{ Crest oty paiem }——

Keywordspatiern g

Statement Description

keywor dsArray. @ The count operation counts all elements in the array object keywordsArray. The
count() <1 condition is true, if the array has no elements (less then 1).

As an alternative, you can edit the guard statement with the Action Script Editor which gives you more
control of the syntactical correctness. Select the control flow and press Ctrl - Enter to start the Action
Script Editor.

Creating an Empty Pattern

Open the Action Script Editor for action Create Empty Pattern. Add the action script that assigns a
regular expression to the string object keywordsPattern. Later on, this regular expression stored in the
string will be used to select all rows, because no keywords were entered. See detailed information about
regular expressions in the xXUML Services Reference Guide.

Scivty Acinty Digram Greats Kepwords Patm 1] redte Kepwors Pater]

St

“ActionScripts

scrpt =create KeywordsAay:
ordsrray = select each from

Fle Edt View Code Global Ops
Create Empty Pattern k23

Actonsapt
[——— ~ AdionScripts .
Create Empty
Pattern

. [128 |

Find: © O [E OMetchCase [JRepea [keywordspatter : sring
“centraButers ok, | concel
Keywordspatter string X

Operators of Regular Expressions Description

Match any character.

* Match O or more times. Match as many times as possible.
Statement Description
set keywordsPattern = ".*"; ' Assigns the regular expression . * to the output string object ke

ywordsPattern. The search pattern . * will find all characters
of a string, which means that in the search every title will
match (all records will be returned).

Second Branch of the Decision Node

If at least one keyword is entered, the flow branches from the decision node CheckEmpty downwards.
Remember, that the flow branches to the right, if the number of elements of array keywordsArray is less
than 1. If this condition is not true, the flow branches downwards.

https://doc.scheer-pas.com/display/BRIDGE/Regular+Expressions

Double-click the control flow, name it not empty , and enter else in the Guard field.

y I = ey iroass |5 x
IR A AL L L L LN = EE B aaaaom v

[

eced Con o n e proparces
o Al o e epertes

CAdonsciphs
reota Empty Patern
st epucrasPatem -)

S\Rtespestcaton s cuomie o etrrine f chencn
Tavrsa e F n e vEdGE P o Gt o

e [ﬁ)i

O —

=

Statement Description

el se else represents all other cases that were not specified explicitly.

In the next step, you will construct a search statement with regular expressions in the action state Set
Keywords Pattern. The search pattern will also be stored in the string object keywordsPattern and
contains all keywords found in the array keywordsArray.

Setting the Keyword Pattern

Open the Action Script Editor for action Set Keywords Pattern. Add the action script below that assigns
a regular expression to the string keywordsPattern. Later on, the search pattern will be used to select all
matching rows according to the entered keywords.

‘activity Activity Diagram Create Kejwords Paftem [[) Create Keywords Patiern }]

st

[! “Acionscipts
[wserinpt: SearchParameters | Collect h
scrpt =
5ot keywordsarray = select each from
|userinput keywords where element 1= ")

E2EATar =
CheckEmeh ¥ emeb el Fie e View Code GlobslOps

 amrayEtement = String)
Set Keywords Pattern k23
Inot empt felse

Acton Sapt

3 [P = reduce
CETEERD using element. concat(”. |+, nextElenenc)
SetKeywords

o it single use elenencs| ordspatiem: sting

[[=]
] © O = OMethcese (I8

centralBufers
keywordsPatte: String

ok | cancl

3

Operators of Regular Expressions Description
Match any character.
* Match 0 or more times. Match as many times as possible.

Alternation. A| B matches either A or B.

Action Script of Set Keywords Pattern

set keywordsPattern = reduce keywordsArray using el enent.concat(".*|.*",
next El ement) if single use el enent;

The statement r educe ... using concat collects all elements of an array in a simple string. When
iterating over the array keywordsArray, element and nextElement are placeholders for the current and
the next array element of each iteration.

elenment, ".*|.*", nextEl ement builds a list composed of a combination of keywordsArray

elements and the regular expression . *| . *. If the array contained only one element, the resulting string
would only contain the value of this element (defined by if single use element). Below, you will find an
example on how this regular expression works.

Finalizing the Keywords Pattern

To finish the activity diagram, complete the search statement by concatenating another regular

expression at the beginning and at the end of the string object keywordsPattern. In this activity diagram,
this is the last step in the action flow.

Open the Action Script Editor for action Finalize Keywords Pattern and enter the statement below.

(actiy Actity Diagram Creste Kejwords Patim{ 5 Creats Keywords Patier]
st
[! «ActionScripts
[wserinput: SearchParameters | Collct N

(scrpt = “create keywordsanay

et keywordsarray = select each ffom

userinput keywords where element 1= 7}

& E2E Action Script Editor E
Fie Edt View Code Global Ops
=
Adionscipty
keyworad| Finalize Keywords Pattern 3 G p"mm
arayEler |
‘Action Script. EELE -
set « ot
tern String
[2
cont) | Fd: [Match Case [Repeats
keywordsi
= ==
“Adionsaipts
Finalize Keywords Pater
@
End

Action Script of Finalize Keywords Pattern

set keywordsPattern = concat(".*", keywordsPattern,

s

The operation concat concatenates the regular expression ., the current value of *keywordsPattern,

and the search pattern . * a second time. The new value will be re-assigned to the string keywordsPatte
n.

The following shows an example of a resulting value in the string object keywordsPattern.

Three keywords are passed as input from the client (userinput.keywords):

® nemo
® lord
® pirates

Value of string keywordsPattern, which will be used to search in each element title (compare action
scripts in action node Set Keywords Pattern and Finalize Keywords Pattern):

.*neno. *|.*lord. *|.*pirates.*
How to read the regular expression:

Match any character as many times before and behind nemo, or any character as many times before
and behind lord, or any character as many times before and behind pirates.

In other words:

If any of the three keywords will be found anywhere in the title, then the search pattern matches, and
the row has to be selected.

The activity has been completed.

=) qumry rodcs [X
Fry Z =EmEs YBO0% &-£-4-

ww

.
L 2
@ b
;

B Qe Qus v

s
RjE[El2 ¢T3

[eyworasara using s
[nextement g us

opworssPatom =~

st ="t kg

In order to make the model more readable and to prevent crossing object or control flows, MagicDraw
offers a functionality to split flows. Follow the following steps to split the control flow from the action node

Create Empty Pattern to the activity final node.

ey e et]

<AdionScriph:

scrpt = “create keywordsArray.
et keywordsAray = select each from
usenpuL keywords where element 1=}

E2EAman
Keywords=Array : Array

empty keywordsamay count) < 1]

“Acionsaipts

arayEtement = String)

jnotemptyfelse]

<AdionScripts

Set Keywords Pattern

script = set keywordsPattem = recuce

[keywordsAray using lement concal"L,
)

cantalBufers

{501pt = el KeyworgsPattem ="

Enter

S ies Alenter
GoTo

% SeectinComsinment Tree AteB

keywordsPatten : String

Splt Control Flow

AdionScrint:
Finalize Keywords Pattern
scrpt = et keywordsPattem =
concat~, keywordsPattem, “ ;3

Reed Eements p
ComeTo R
Toos D

/' Remove Break Points
Edit Compartments
stereotype

ActionScripts

tseipt = "create keywordsaray,
rashrray = select each from
luserinput keywords where element 1=}

E2EATa

CheckEmpty Y empty keywordsAray county < 1)

:Amay
(arrayElement = String)

AcionScripts

SetKeywords Pattem

scrpt = "set keywordsPattem = reduce.

eywordsarray using element concal(" |,
=

“centralBufers
KeywordsPatte: String

<ActionScripts
Finalize Keywords Pattern

{script = st keywordsPattem =
concatr. keywordsPatter, "

ttern: String

Save H the UML model.

Filtering the Content

Return to the activity diagram Filter File Content.

Right-click the
control flow
and select the
menu item Ref
actor > Split
Control Flow
from the
context menu.

The control
flow is now
split and has
two new

ends. The
round symbol (

) marks
the points
where the
control flow is
bridged.
Rearrange
the control
flow ends
according to
the picture on
the left.

Now, you will use the search term, which you have stored in the object keywordsPattern in the previous
steps. In the action node Filter File Content, the actual search will be performed. Enter the statements
below to the action script of the action node Filter File Content.

activity Activity Diagram Filter File Content[£ Filer File Content 1]

Start

Create a Pattern of Keywords : | -

e — " userinput
userinput: SearchParameters P Create Keywords Pattern o

keywordsPattern

allProducts : Catalog o @
Filter File Content

File Edit View Code Global Ops
Filter File Content }E
Action script
create filteredProducts; @
set riltersdFroducts.products = select each from allProducts.products where
element.title. tolower() like keywordsPattern.tolower();|
v
[e= T
Find:) (0 7] [IMstch Case [Repeats
|/
DK% Caneal

Action Script of Filter File Content

create filteredProducts;
set filteredProducts. products = sel ect each from all Products. products
where element.title.toLower() |ike keywordsPattern.toLower();

The operation sel ect each from processes every element of array products, which is an attribute of
input object allProducts. The search terms are applied to element.title, which is explained as follows. ele
ment temporarily stores array elements of array products, which are of type Product. The class Product
has a string attribute title, which is considered in this search (compare also to the data structure, which
you defined in the class diagram).

The search term is stored in the string keywordsPattern, which you prepared before. t oLower () will
set all characters of the search term and title elements to lower case as the search should not be case
sensitive. Array elements that match the search pattern according to the where clause (wher e
element.title.toLower() |ike keywordsPattern.toLower ()) will be stored in the attribute pr
oducts (base type array) of object filteredProducts (set filteredProducts. products =).

Save H the UML model.

	Filtering the File Content MD18

