
Filtering the File Content MD18

You will now implement a search mechanism to search the product catalog file .catalog.xml

Drawing the Activity Diagram Filter File Content
Open the activity diagram . It will contain all activities to filter the content of the XML Filter File Content
file according to the search parameters.

The finalized activity diagram will look as shown below.

In the
containment
tree, select Qu
eryProductsP

 and ortType
create the
new activity
diagram Creat
e Keywords

.Pattern

Components

On this Page:

Drawing the Activity
Diagram Filter File Content
Creating Keyword Patterns

Decision Nodes
Arrays
Collecting Non-
Empty Keywords
Counting
Elements of the
Array
Creating an
Empty Pattern
Second Branch of
the Decision Node
Setting the
Keyword Pattern
Finalizing the
Keywords Pattern

Filtering the Content

https://doc.scheer-pas.com/display/ACADEMY/Components+Lesson+3.1+MD18
https://doc.scheer-pas.com/display/ACADEMY/Components+Lesson+3.1+MD18

Add the
necessary
parameters to
the activity:

userInput
:
SearchP
arameters
(direction

)in
keyword
sPattern
: String (

)out

Return to the
activity
diagram Filter

: File Content
Add an inital
node Start
and an
activity final
node .End

Drag and
drop the
activity Create
Keywords

 on Pattern
the diagram.

Open the
specification
dialog of the
action node
and assign
the name Cre
ate a Pattern

.of Keywords

Move the
input pin userI

 on the nput
left side of the
action node
and the
output pin key
wordsPattern
on the right
side.

Add another
action node to
the diagram
and name it Fi
lter File

.Content

Draw the
control flow.

To finish the
diagram, the
necessary
parameters
have to be
added to the
diagram.

Select them in
the
containment
tree and...

... drag and
drop the input
parameters
on the left
side of the
diagram
border, the
output
parameter on
the right side
and finish the
diagram by
drawing the
necessary
object flows.

Save the UML model.

Creating Keyword Patterns
In the next step, you will draw the activity diagram that addresses the keywords search. Requesting the
service, the user may fill in no, some, or all keywords in the search mask. Upon this input you have to
decide what has to be done next. This decision will be modeled with a decision node. If no keyword has
been entered, all rows will be selected. If one or more keywords have been entered, a row will be
selected if at least one of the keywords matches the title.

You will create an internal array object , which will contain all keywords the user has keywordsArray
entered in the search mask. If the number of array elements is zero, you will create a string object called

 that does not contain any keywords. Otherwise, you will assign a value to this string keywordsPattern
object that contains all given keywords within regular expressions. The string will be keywordsPattern
used for filtering the rows later.

1.
2.
3.
4.

Regular expressions are used to find search patterns in a string. You will use this technique in this
example to find keywords in the field of each product record. This will be all implemented in the title
activity .Create a Pattern of Keywords

Create a new behavior activity diagram in the package Create Keywords Pattern QueryProductsPortT
 and assign it to the action node . Double-click the action node to ype Create a Pattern of Keywords

open the empty activity diagram.

First, you will outline all actions of the activity diagram.

First, you filter out all empty keywords. The result is stored in an array.
In the decision node, the number of keywords in the array is evaluated.
If the array is empty, an empty pattern is created. No further action is executed.
If the array is not empty, another pattern is defined using the keywords in the array in the
following two actions.

Create the outline of the activity diagram as shown in the picture above.

Element Name Type Direction

Initial and final activity node Start and End

Action nodes Collect Non-Empty Keywords

Set Keywords Pattern

Finalize Keywords Pattern

Create Empty Pattern

Decision node CheckEmpty (see below on how to draw a
)decision node

Input parameter
(stores the search parameters
passed from the client)

userInput SearchPara
meters

in

Output parameter keywordsPattern String (base
type)

out

Central buffer nodes keywordsArray (see section below on
how to define an array)

Array (base
type)

keywordsPattern String (base
type)

Draw all control and object flows as shown in the screenshot.

Decision Nodes

In the
decision
node, you
need to
decide
whether the
keywords
array from
parameter use

 is rInput
empty.

Select a Decis
 icon from ion

the diagram
toolbar and
place it on the
activity
diagram.

Double-click it
to open the
Decision
Node
specification
dialog and
assign the
name CheckE

.mpty

Arrays

The object is an array, which can contain an unlimited number of elements. If an keywordsArray String
array is drawn in the activity diagram, you always need to define the type of its array elements.

Double-click
the object key

 wordsArray
to open its
specification
dialog. Set
the to Type Ar

, which is ray
a base type.

Each array
must be
stereotyped
as an array.
Select the
stereotype E2

 in the EArray
Applied

 Stereotype
field.

Setting this stereotype, the new field is displayed. Define the base type as type of Array Element String
the array elements.

The type of the array elements is visible now in the second line of
the object node.

Collecting Non-Empty Keywords

Open the Action Script Editor for action and define the action script to Collect Non-Empty Keywords
process the five keywords passed from the client.

Action Script of Collect Non-Empty Keywords

create keywordsArray;
set keywordsArray = select each from userInput.keywords where element !=
"";

The operation , which is an attribute processes every element of array select each from keywords
of input object .userInput

By defining the condition , the operation only considers keyword fields, which where element != ""
the user did not leave empty in the search mask (read: array element that does not equal an empty
string). All keywords that are found in the array and match the condition will be copied to the keywords
array .keywordsArray

Counting Elements of the Array

If no keywords are passed, the flow branches from the decision node to the right. As you CheckEmpty
copied all keyword fields which have not been empty from the input object to the array object userInput k

, you can now count all elements. If the array has no elements the flow will branch to the eywordsArray
right.

Double-click the control flow that branches to the right. Name the control flow and enter the empty
following condition in the field.Guard

 Arrays always need to be created with the create statement.

 When typing the select keyword followed by a blank, the statement will be completed except the
object and the condition in the where clause.

Statement Description

keywordsArray.
count() < 1

The count operation counts all elements in the array object . The keywordsArray
condition is true, if the array has no elements (less then 1).

As an alternative, you can edit the guard statement with the Action Script Editor which gives you more
control of the syntactical correctness. Select the control flow and press - to start the Action Ctrl Enter
Script Editor.

Creating an Empty Pattern

Open the Action Script Editor for action . Add the action script that assigns a Create Empty Pattern
regular expression to the string object . Later on, this regular expression stored in the keywordsPattern
string will be used to select all rows, because no keywords were entered. See detailed information about
regular expressions in the .xUML Services Reference Guide

Operators of Regular Expressions Description

. Match any character.

* Match 0 or more times. Match as many times as possible.

Statement Description

set keywordsPattern = ".*"; Assigns the regular expression to the output string object .* ke
. The search pattern will find all characters ywordsPattern .*

of a string, which means that in the search every will title
match (all records will be returned).

Second Branch of the Decision Node

If at least one keyword is entered, the flow branches from the decision node downwards. CheckEmpty
Remember, that the flow branches to the right, if the number of elements of array is less keywordsArray
than 1. If this condition is not true, the flow branches downwards.

https://doc.scheer-pas.com/display/BRIDGE/Regular+Expressions

Double-click the control flow, name it , and enter else in the field.not empty Guard

Statement Description

else else represents all other cases that were not specified explicitly.

In the next step, you will construct a search statement with regular expressions in the action state Set
. The search pattern will also be stored in the string object and Keywords Pattern keywordsPattern

contains all keywords found in the array .keywordsArray

Setting the Keyword Pattern

Open the Action Script Editor for action . Add the action script below that assigns Set Keywords Pattern
a regular expression to the string . Later on, the search pattern will be used to select all keywordsPattern
matching rows according to the entered keywords.

Operators of Regular Expressions Description

. Match any character.

* Match 0 or more times. Match as many times as possible.

| Alternation. matches either or .A|B A B

Action Script of Set Keywords Pattern

set keywordsPattern = reduce keywordsArray using element.concat(".*|.*",
nextElement) if single use element;

The statement collects all elements of an array in a simple string. When reduce ... using concat
iterating over the array , element and nextElement are placeholders for the current and keywordsArray
the next array element of each iteration.

element, ".*|.*", nextElement builds a list composed of a combination of keywordsArray
elements and the regular expression . If the array contained only one element, the resulting string .*|.*
would only contain the value of this element (defined by if single use element). Below, you will find an
example on how this regular expression works.

Finalizing the Keywords Pattern

To finish the activity diagram, complete the search statement by concatenating another regular
expression at the beginning and at the end of the string object . In this activity diagram, keywordsPattern
this is the last step in the action flow.

Open the Action Script Editor for action and enter the statement below.Finalize Keywords Pattern

Action Script of Finalize Keywords Pattern

set keywordsPattern = concat(".*", keywordsPattern, ".*");

The operation concatenates the regular expression . , concat , the current value of *keywordsPattern
and the search pattern a second time. The new value will be re-assigned to the string .* keywordsPatte

.rn

The following shows an example of a resulting value in the string object .keywordsPattern

Three keywords are passed as input from the client ():userInput.keywords

nemo
lord
pirates

Value of string , which will be used to search in each element (compare action keywordsPattern title
scripts in action node and):Set Keywords Pattern Finalize Keywords Pattern

.*nemo.*|.*lord.*|.*pirates.*

How to read the regular expression:

Match any character as many times before and behind , or any character as many times before nemo
and behind , or any character as many times before and behind .lord pirates

In other words:
If any of the three keywords will be found anywhere in the title, then the search pattern matches, and
the row has to be selected.

The activity has been completed.

In order to make the model more readable and to prevent crossing object or control flows, MagicDraw
offers a functionality to split flows. Follow the following steps to split the control flow from the action node

 to the activity final node.Create Empty Pattern

Right-click the
control flow
and select the
menu item Ref
actor > Split

 Control Flow
from the
context menu.

The control
flow is now
split and has
two new
ends. The
round symbol (

) marks
the points
where the
control flow is
bridged.
Rearrange
the control
flow ends
according to
the picture on
the left.

Save the UML model.

Filtering the Content
Return to the activity diagram .Filter File Content

Now, you will use the search term, which you have stored in the object in the previous keywordsPattern
steps. In the action node , the actual search will be performed. Enter the statements Filter File Content
below to the action script of the action node .Filter File Content

Action Script of Filter File Content

create filteredProducts;
set filteredProducts.products = select each from allProducts.products
where element.title.toLower() like keywordsPattern.toLower();

The operation processes every element of array , which is an attribute of select each from products
input object . The search terms are applied to element.title, which is explained as follows. allProducts ele

 temporarily stores array elements of array , which are of type . The class ment products Product Product
has a string attribute , which is considered in this search (compare also to the data structure, which title
you defined in the class diagram).

The search term is stored in the string , which you prepared before. will keywordsPattern toLower()
set all characters of the search term and elements to lower case as the search should not be case title
sensitive. Array elements that match the search pattern according to the where clause (where

) will be stored in the attribute element.title.toLower() like keywordsPattern.toLower() pr
 (base type array) of object ().oducts filteredProducts set filteredProducts.products =

Save the UML model.

	Filtering the File Content MD18

