
Activities Lesson 2 MD18

The next step in the development process is to model the implementation of the operation . getProduct
At the end of this development step, your activity diagram will look like the following:

Adding Parameters to the Activity Diagram
The activity diagram will contain actions to define an exchange rate and to receive and Get Product
process input data.

Objects represent object flow through activities and can change their state. Objects may originate outside
of the context of an activity diagram – in other words, they are input parameters to the activity diagram.
On the other side, activity diagrams may produce objects that are used as output. They can be passed
as output parameters to an outside context, which can be a calling activity diagram or a port type
operation.

Previously, you defined the operation , its parameters, and the implementing activity diagram. getProduct
Now, you will add the two parameters to the activity diagram in the diagram pane to model the object
flow. Remember that each activity parameter node works as a container of a parameter. They have a
different color than normal object nodes that are drawn in the activity diagram and indicate that these
nodes contain activity parameters. In order to visualize input and output parameters, you can place them
on the left or right side of the diagram frame. The left side corresponds to input, the right side to output.

Components

On this Page:

Adding Parameters to the
Activity Diagram
Copying UML Elements
Mapping Input to Output
Using Call Operation
Actions
Using Action Script

Completing the
Object and the
Control Flow
Processing the
Data Using Action
Script

Implementing the Class
Operation

https://doc.scheer-pas.com/display/ACADEMY/Components+Lesson+2+MD18
https://doc.scheer-pas.com/display/ACADEMY/Components+Lesson+2+MD18

Select the
parameter inp

 in the utTitle
containment
tree.

As it is an
input
parameter,
drag the
selected
parameter to
the left border
of the
diagram
frame until the
diagram
frame gets
surrounded
by a blue
rectangle.

Release the
mouse button.

The input
activity
parameter
node has
been drawn in
the activity
diagram and
is displaying
the name of
the parameter
it is
containing.
On the right
side of the
colon, the
type of
parameter (Str

) is ing
displayed.

Now, add the
output
parameter to
the activity
diagram.
Select the
parameter out

 in the putTitle
containment
tree.

As it is an
output
parameter,
drag the
selected
parameter to
the right
border of the
diagram
frame until the
diagram
frame gets
surrounded
by a blue
rectangle.

Although you were dragging the and not the from the parameter activity parameter node
containment tree, MagicDraw placed the activity parameter node on the activity diagram.

Release the
mouse button.
The output
activity
parameter
node has
been drawn in
the activity
diagram and
is displaying
the name of
the parameter
it is containing.

In the lower
left corner of
MagicDraw,
next to the
E2E Model
Compiler, you
can find the Z

 tab. The oom
blue frame
marks the
section of the
diagram you
are currently
viewing in the
diagram
pane. You
can shrink or
enlarge the
section by
dragging the
little blue
handles in the
corners of the
blue frame.

In order to get a better overview, click the white rectangle to automatically resize the diagram section.
Now, the whole diagram fits into the diagram pane.

Copying UML Elements
Before implementing the new functionality, you will copy some UML symbols from the port type operation
diagram to the new port type operation diagram .Get Title Get Product

In the
containment
tree, navigate
to the activity
diagram Get

, which Title
has been
created in
lesson 1.
Double-click it
to open it in
the diagram
pane.

Select the
items as
shown in the
picture on the
left while
holding down
the key: Shift
the initial
node, the
action node G

, and et Title
the final node.

Press - Ctrl C
on your
keyboard to
copy them to
the clipboard.

Switch back
to the activity
diagram Get

.Product

Paste the
copied items
with - . Ctrl V
Note that
MagicDraw
copied the
control flows,
too, although
they were not
selected.

Rearrange
the UML
symbols and
delete the
control flow
between the
action node G

 and et Title
the final node
by pressing Ct

.rl - D

Click the
activity
parameter
node inputTitle
and select Obj

 from ect Flow
the smart
manipulation
toolbar. Draw
an object flow
to the action
node .Get Title

Copying UML symbols results in duplicate elements in the from one diagram to another
containment tree with the same name. The duplicated elements exist twice, in the activity tree of the
source diagram as well as in the activity tree of the target diagram.

Copying UML symbols only results in copying the graphical element - the within the diagramsame
symbols. The same symbol appears twice in the diagram pane, but the UML element in the
containment tree only once. Symbols are only representations of the UML elements in the
containment tree.

Deleting the UML element in the containment tree would remove all symbol representations in the
diagram pane.

In order to create a duplicate UML element , paste the copied symbol with within the same diagram
 or - . In this case, MagicDraw will not only create a new symbol Edit - Paste with New Data Ctrl E

with a new name but also a new element in the containment tree.

 Ctrl - D
deletes
not only
the
symbol
in the
diagram
pane but
also the
UML
element
from the
containm
ent tree.

Draw an
object flow
from action Ge

 to t Title
parameter out

.putTitle

Save the UML model.

Mapping Input to Output

At the
beginning of
the modeling
phase of this
Web service,
you defined
the classes
for the input
and output
data
structures.

Remember that by defining dependencies between the attributes of the input and output class, the input
data can easily be mapped to the output data.
Now, you will initiate this mapping by using the stereotype in an action. This action then <<Mapping>>
will internally translate the declarations defined in class diagrams into a set of action script statements
that actually execute the mapping. Later on in this lesson when tracing the compiled service with the E2E
Analyzer, you can see this in more detail.

The input and output objects will be added to the diagram as parameters.

Select the Co
 ntrol Flow

icon from the
smart
manipulation
toolbar and
draw an
action node
below Get

. Title
MagicDraw
draws both
the control
flow and the
action node.

Start directly
typing the
action node
name Map
Product

. Record Data
Finish the
entry with Ent

.er

Add the
parameters in
putProductRe

 and cord outp
utProductRec

 to the ord
diagram.
Select them in
the
containment
tree (below
the activity Ge

) t Product
and drag
them to the
frame borders
of the
diagram pane.

Select the
action node M
ap Product

 Record Data
with the right
mouse button
and choose St

.ereotype

Start typing ma
to filter the
list. Select Ma

 and pping
click .Apply

The
stereotype <<

 Mapping>>
specifies the
action Map
Product

 Record Data
as a special
action having
no action
script. The
mapping
stereotype is
indicated by

the icon
in the upper
left corner of
the action
node.
The data
mapping is
done as
defined in the
class diagram
Product
Query

. The Classes
involved
classes are
identified by
the object
flows
connected to
this mapping
action.

Click the
parameter inp
utProductRec

 and ord
select Object

 from the Flow
smart
manipulation
toolbar.

Draw an
object flow
from
parameter inp
utProductRec

 to action ord
Map Product

.Record Data

As the currency conversion is not done yet, the output data of the mapping action will not flow directly to
the output parameter , but will be temporarily stored in a . outputProductRecord Central Buffer Node
This UML symbol is used to store information only within the activity diagram. The information is not
passed outside the context of the activity diagram.

Click the
action Map
Product

 Record Data
and select Obj

 from ect Flow
the smart
manipulation
toolbar.

Click the
diagram pane
next to the
action node M
ap Product

 Record Data
to create a
central buffer
node. Action
node and
central buffer
node will be
connected by
an object flow
automatically.

Double-click
the object to
open the
specification
dialog.
Assign the
name outputP
roductRecord
and select the
type OutputPr

 oductRecord
from the type
list.
Remember
that the list
can be filtered
by typing the
initial
characters in
the field . Type

Note, that the
object has the
same name
and type as
the parameter.

Click .Close

While the central buffer node is used for the object flow within the context of the activity diagram, the
activity parameter node is used to pass the data to the outside context. The object flow only leads to the
parameter node when the object does not change its state anymore. Here, this outputProductRecord
will be right after the currency calculation that is implemented further below.

Save the UML model.

Using Call Operation Actions
In the next step, you will call a class operation in order to get the exchange rate for CHF / USD. The
operation is a member of class . The operation returns a getExchangeRate CurrencyCalculator
parameter called being of type . In UML, operations are called using exchangeRateCHFUSD Float Call

.Operation Actions

Click the
action node M
ap Product

 Record Data
and select Co

 ntrol Flow
from the
smart
manipulation
toolbar.

Move the
mouse cursor
down, but this
time click the
right mouse
button. A list
of possible
UML symbols
appears.

Choose Call
Operation

.Action

In the Select
 Operation

dialog, filter
the list by
typing getExc
and select the
operation getE

.xchangeRate

Click .OK

Call operation
actions and
call behavior
actions may
have input
and output
pins. An input
pin is a pin
that holds
input values
to be
consumed by
an action. An
output pin is a
pin that holds
output values
produced by
an action.

In the Select
 dialog, Pins

click .OK

The call operation action node is displayed in a different color than normal actions. It visualizes an action
calling an operation. The name of the called operation is displayed in the call operation action node.
As the operation has the output parameter , an output pin is getExchangeRate exchangeRateCHFUSD
docked to the action node. Name and type of the object is displayed next to the pin. By default, a target
pin is created automatically, too (see orange mark in the picture below).

Delete the target pin. Remember to use to delete the element and not only its symbol.Ctrl - D

An output pin holds output values produced by an action. The value can be delivered to other actions via
object flows. At the same time, objects can be transformed to other objects having a different name using
pins. This increases modeling speed and helps avoiding modeling errors. It would be equivalent to use a
central buffer node instead of a pin, however, it is best practice to use pins in this case.

As it is an output pin and in order to visualize the information flow, we recommend dragging the output
pin to the right border of the call operation action node.

For static operations, target pins are not necessary and must be deleted. The target pins are only
needed for non-static operations.

Save the UML model.

Using Action Script
In the next (and last) action, you will use the float , which was received from exchangeRateCHFUSD
operation , in order to convert the price in USD to the price in CHF. The price in USD getExchangeRate
was taken from the input object () and has already been mapped to the object inputProductRecord outp

. In the next step, you will update this object with the calculated price in CHF and the utProductRecord
exchange rate, before the object is returned to the calling client.

Completing the Object and the Control Flow

Before editing the action script of the next action, you will first complete the control and the object flow.
Having completed the object flow you get full editing support of the Action Script Editor.

Select the call
operation
action getExc

 hangeRate
and choose C

 ontrol Flow
from the
smart
manipulation
toolbar.

Draw a new
action node
and
immediately
start typing its
name Set
Price CHF
and
Exchange

.Rate

The new action needs some input data: the exchange rate and the Set Price CHF and Exchange Rate
output product record data, which has to be updated.

Select the
output pin exc
hangeRateCH

 and FUSD
choose Object

 from the Flow
smart
manipulation
toolbar.

Draw a object
flow from the
output pin to
the new
action node S
et Price CHF
and
Exchange

.Rate

Now, draw an
object flow
from the
central buffer
node outputP
roductRecord
(to which the
input product
record data
had been
mapped) to
the new
action node
as well. This
is required, as
the action
needs the
reference to
this object in
order access
and update its
attributes.

Now, the processed data must be passed to the output parameter.

Draw an
object flow
from action
node Set
Price CHF
and
Exchange

 to the Rate
output
parameter out
putProductRe

.cord

Finally,
complete the
control flow
by connecting
Set Price
CHF and
Exchange

 to the Rate
activity final
node.

Processing the Data Using Action Script

In the next modeling step, you will define the action script of the action Set Price CHF and Exchange
. Within this action script, you will set the exchange rate to the output parameter and perform the Rate

currency calculation.

Click the
action node S
et Price CHF
and
Exchange

 with the Rate
right mouse
button and
select Action

 Script Editor
from the
context menu.

The E2E
Action Script

 opens.Editor

Remember
that you
defined the
attribute exch

 in angeRate
class outputP
roductRecord
.
Although the
Action Script
Editor is
open, you can
check the
class
attributes in
between.

Select the
central buffer
node outputP
roductRecord
and select Go
To > Type
OutputProdu

 ctRecord
from the
context menu.

The class
definition of O
utputProduct

 gets Record
selected in
containment
tree.

Expand the
tree to view
all attributes
of OutputPro

. ductRecord
In the
meantime, the
Action Script
Editor stays
open.
Continue
working in the
Action Script
Editor now.

You can reference the attribute of class by writing the object exchangeRate outputProduct-Record
name followed by a dot and the attribute name (outputProductRecord.exchangeRate). Use the set
assignment statement in order to assign a value to an attribute being of a base type (here).Float

Adding a
space after
set lists all
available
objects of the
current action.
Select the
object output
ProductRecord
and press Ret

.urn

Now, you
need to
reference the
attribute exch

 of angeRate
the object out

 putProduct
. Record

After adding a
dot behind the
object name,
all attributes
of the object
(blue) and all
available
operations
(green) will be
listed. The list
of operations
contains the
operations of
a
corresponding
base class
(for instance a
String) as well
as Any Type

 Operations
(operations
that are
applicable to
any possible
type).

Select the
attribute exch

.angeRate

The notion in the suggestion list indicates that the attribute is of base type .exchangeRate:Float Float

Note that an
equal sign (=)
has already
been added
after entering
set.

Go to the end
of the line and
press - Ctrl Sp

 to force ace
the list of
suggestions
for possible
input objects.
Select exchan
geRateCHFU

.SD

If Action Script Editor does not offer you the accessible objects automatically, you can force the list
of suggestions by pressing - .Ctrl Space

Every action
script
statement has
to be finished
with a
semicolon (), ;
which you
have to add to
complete the
statement.

In the second action script statement, you will perform the currency calculation. The price in USD will be
converted to the price in CHF. You will use arithmetic operators in the set assignment statement and
assign the value of attribute multiplied with the value of object to the priceUSD exchangeRateCHFUSD
value of attribute .priceCHF

Enter the following action script using the script editing features.
set outputProductRecord.priceCHF = outputProductRecord.priceUSD *
exchangeRateCHFUSD;

The action
script is
complete.

Press the Ctrl
- keys Enter
to close the
Action Script
Editor.

The action script is now shown in the tagged value within the action node script Set Price CHF and
. Note that the stereotype was applied to the action node as well.Exchange Rate <<ActionScript>>

The factor is known within the action script as it was passed into the action exchangeRateCHFUSD
node via the output pin of call operation action .getExchangeRate

Save the UML model.

Next, you will implement the class operation .getExchangeRate()

Implementing the Class Operation
Besides attributes, there are operations that are defined on classes. Basically, these operations can be
called within a service instance but not externally by other processes, clients, etc. However, if you like to
publish class interfaces, for instance as Web service interfaces, you can give the class the stereotype <<

. A port type accumulates operations that a client can call on a Web service. If you E2ESOAPPortType>>
want to publish other interfaces like SAP RFC modules or HTTP operations, the Bridge provides other
appropriate stereotypes.

While defining the you defined the class , which has no attributes and one Classes CurrencyCalculator
operation . getExchangeRate
The operation is defined as static. That means, no instance of the class has to be getExchangeRate
created to use the operation. In chapter , you directly called this operation Using Call Operation Action
in the activity diagram via the , in order to get the exchange rate for the currency Call Operation Action
conversion.

Now, you will implement this operation in the activity diagram, you already defined before. It is already
assigned to the class operation . The activity diagram is located in the containment getExchangeRate
tree directly within the class element. Navigate to the activity diagram (in Get Exchange Rate Data -

) and open it. Services - GetProductService - Classes - Currency Calculator
Now add the required diagram components. Add the following to the diagram pane:

an initial node
an action node
and an activity final node

The most effective way to draw this is described below.

First, add an
initial node to
the activity
diagram.

Just after
drawing the
UML element
start typing a
name. Assign
the name Start
.

Select the
initial node
and choose
the Control

 icon Flow
from the
smart
manipulation
toolbar.

Drag the
control flow
downward
and right-click
on the
diagram pane
below the
initial node.

From the
context menu,
select Call
Behavior

 as Action
node type the
control flow is
leading to.

Assign the
name Define
Exchange

.Rate

Select the
action node
and draw
another Contr

 ol Flow
again. As
ending point
of the control
flow select Act

.ivity Final

Assign the
name .End

The activity
diagram
should look
like this.

Select the
parameter exc
hangeRateCH

 in the FUSD
containment
tree.

As it is an
output
parameter,
drag it on the
diagram pane
on the right
border of the
diagram.

Draw an
object flow
from the
action node to
the output
parameter.

Frequently, it is necessary to store literals global to an xUML service. In the Bridge context, it is possible
to define name value pairs that are configurable by the E2E Embedded Runtime respectively the E2E
Bridge. These name value pairs are called settings.

For the moment, you will hard code the exchange rate as a fix value that can be edited via the xUML
service settings. In lesson 3, you will extend the service by implementing a call to an external Web
service in order to get the exchange rate.

Open the Acti
on Script

 and Editor
start with the
set
assignment
statement:
set
exchangeRat
eCHFUSD =

After the
equal sign,
type and s
open the
suggestion list
with - Ctrl Spa

. Select the ce
second
setting
statement
offered as you
want to
assign a float
value.

Giving initial and final nodes names makes maintaining and debugging the Web service easier, as
they can be identified via their name. Especially if there are more ending points in the same diagram
we recommend giving them a name. Note that the names are displayed in the containment tree now.

Replace the n
 by ame

"exchange
rate CHF -
USD".
Replace
defaultValue
by, for
instance,
1.0658.
This
statement will
create a
configurable
setting of the
xUML service,
whose value
is assigned to
the variable ex
changeRateC

.HFUSD

Finish the
statement
with a
semicolon
and close the
Action Script
Editor.

The implementations of the activity diagrams are finished now.

Save the UML model.

The next step in the development process is to modify the component diagram.

	Activities Lesson 2 MD18

