Activities Lesson 2 MD18

A A Testing

The next step in the development process is to model the implementation of the operation getProduct.
At the end of this development step, your activity diagram will look like the following:

‘activity Activity Diagram Get Product| &) Get Product |

cActonScripty

GetTitle
inputTitie : String tscript="set
outputrite =

Components

outputTitie: String

On this Page:

® Adding Parameters to the
Activity Diagram
® Copying UML Elements
| ® Mapping Input to Output
® Using Call Operation
Actions
® Using Action Script
© Completing the
Object and the
Control Flow
© Processing the
. L. . Data Using Action
Adding Parameters to the Activity Diagram Script
® Implementing the Class
Operation

script = "set

= exchangeRateCHFUSD:

E roductRecord priceCHF
= outputProduciRecord priceUSD *
exchangeRateCHFUSD;)

The activity diagram Get Product will contain actions to define an exchange rate and to receive and
process input data.

Objects represent object flow through activities and can change their state. Objects may originate outside
of the context of an activity diagram — in other words, they are input parameters to the activity diagram.
On the other side, activity diagrams may produce objects that are used as output. They can be passed
as output parameters to an outside context, which can be a calling activity diagram or a port type
operation.

Previously, you defined the operation getProduct, its parameters, and the implementing activity diagram.
Now, you will add the two parameters to the activity diagram in the diagram pane to model the object
flow. Remember that each activity parameter node works as a container of a parameter. They have a
different color than normal object nodes that are drawn in the activity diagram and indicate that these
nodes contain activity parameters. In order to visualize input and output parameters, you can place them
on the left or right side of the diagram frame. The left side corresponds to input, the right side to output.

https://doc.scheer-pas.com/display/ACADEMY/Components+Lesson+2+MD18
https://doc.scheer-pas.com/display/ACADEMY/Components+Lesson+2+MD18

Select the
parameter inp

utTitle in the
containment
tree.
[Ex Eﬂ Base Components [E2E Bridge Base.xml]
Ep Base Types [E2E Bridge Base.xml]
Ea Component View
B3 Overview
BR Process Tracing [E2E Process Trading. xmi]
E-Ba Services
E|E| GetProductService
E} o] +ge1Product{ inputTitle : Base Types::String, output
- {3 in inputTitle : Base Types::String
- {3 out outputTitle : Base Types::String
- 3 in inputProductRecord : Services::GetProductSe
- {3 out outputPreductRecord : Services::GetProduc
E} Q Get Product{ inputTitle : String, outputTitle : String,
- inputProductRecord : Services::GetProductServi
-t inputTitle : Baze Types::String
-2 putputProductRecord : Services::GetProductSer
-2 putputTitle : Base Types::String
@ Get Product
=% < W inputTitle : Base T
-3 out outputTitle : Base Ty String
- {3 ininputProductRecord : Services::GetProductse
- {3 put outputProductRecord @ Services::GetProduc
GefTitlePortType
< >
e e s & | B ot oy s | B otxchmos e B E Asitis an
R R e A R T YR R RN e !
] o % input
: RIETeTa o 1 v [[oo Aot Dasram G Proc B tProdut] parameter,
E= . drag the
o : : : : selected
“fem Ay parameter to
alewww Emes ; the left border
© ininputTite 3 @::m:::’am - B N Of the
Drmm o diagram
o S S . frame until the
| g el diagram
| B frame gets
| ® sconyma : : : surrounded
Sl o i by a blue
rectangle.
activity Activity Diagram Get Product[[%§] GetF’rodumU Release the

mouse button.

The input
activity
parameter
node has
been drawn in
[mputTie : String | : : : the activity
diagram and
is displaying
the name of
the parameter
itis
containing.

On the right
side of the
colon, the
type of
parameter (Str
ing) is
displayed.

Although you were dragging the parameter and not the activity parameter node from the
containment tree, MagicDraw placed the activity parameter node on the activity diagram.

Con@inment @ R X
Bir Q o~
= Data
: -Bg Aliases
-Bq Base Components [E2E Bridge Base. xml]
-B Base Types [E2E Bridge Base. xmi]
-B3 Component View
-F3 Overview
-B@ Process Tracing [E2E Process Tracing.xml]
El b Services

BB GetProductService
E5 Classes
E-Bg Ports
= GetProductPortType
E} @ +getProduct(inputTitle : Basze Types::String, outputTitlel
----- & in inputTitle : Base Types::String
----- & out outputTitle : Base Types::String
----- @ in inputProductRecord : Services::GetProductService|
S @ out outputProductRecord : Services::GetProductSer
E} &3 Get Product({ inputTitle : String, outputTitle : String, inpu
----- e inputProductRecord ; Services:: GetProductService::
----- & inputTitle ; Base Types::5iring
----- &7 putputProductRecord : Services::GetProductService
----- & putputTitle : Base Types::String
@ Get Product
----- & in inputTitle : Base Types::String
ut outputTitle : Base T
----- @ in inputProductRecoras! 2
----- & out outputProductRecord @ Services:: GetProductSery

- GetTitlePortType
£ >
S Contarmet | £ Dlayams | 24 SeschResls | I : T Getproduct x. L et a it 3
R 4 & b4~ /7 (721 "I¥BOWN b~ & & oot [mwseane

®
s,

RlzlEle s T @
2 camen

T)

Now, add the
output
parameter to
the activity
diagram.
Select the
parameter out
putTitle in the
containment
tree.

Asitis an
output
parameter,
drag the
selected
parameter to
the right
border of the
diagram
frame until the
diagram
frame gets
surrounded
by a blue
rectangle.

[activity Activity Diagram Get Froduct] [5] Get Pmaumu) Release the
: : : mouse button.

The output
activity
parameter
_ i : node has

. : : : : R been drawn in
EE== _ . : the activity
: diagram and
(xS is displaying
: the name of
the parameter
it is containing.

T E2F Model Compiler Properties | ¥3% Zoom In the lower
left corner of
Zoom = = MagicDraw,
next to the
E2E Model

Compiler, you
can find the Z
oom tab. The
blue frame
marks the
section of the
diagram you
! are currently

viewing in the
Fit in Window (Ctrl+W) diagram

pane. You
can shrink or
enlarge the
section by
dragging the
little blue
handles in the
corners of the
blue frame.

In order to get a better overview, click the white rectangle to automatically resize the diagram section.
Now, the whole diagram fits into the diagram pane.

Copying UML Elements

Before implementing the new functionality, you will copy some UML symbols from the port type operation
diagram Get Title to the new port type operation diagram Get Product.

(activity Activity Diagram Get Title [() Get Title |

This activty uses an action to D Get Title
traverse an input string to an

output string, converting it to Author .
pper case. Creation date | 6/21/07 4:54 Pl

Mogification date

716116 240 P

>{ outpuTitle : String

| o
L : PY : dizgram specifcation -
[000 - 200 To Do via iagram

| speciication -
-
|
inputTitl : String gl
Get Title
tscript = “set
outputitie =
inputTitie toUpper()}
®
(activity Activity Diagram Get Tile [(5] Get Title |
This actiiy uses an action to [Diagramname |[GetTitie
fwraverse an input stingto an
outout sting, converting tta [Autnor .
upper case: |creation cate_|[6121107 454 P

Mogification date

716116 240 P

-aqd
diagram speciication -

! D
)

| L)

L - Tobo

--add To Do via diagram

specification -

) .
onsoe Tai)

Get Title
. B R = .

.6.5.h

>{ outpuTie string

activity Activity Diagram Get Proguct[[] Get Product]

<ActionScripts
Get Title
{script = "set

outputTitle =

inputTitle-toUpper();"}
.

outputTitie ; String

In the
containment
tree, navigate
to the activity
diagram Get
Title, which
has been
created in
lesson 1.
Double-click it
to open itin
the diagram
pane.

Select the
items as
shown in the
picture on the
left while
holding down
the Shift key:
the initial
node, the
action node G
et Title, and
the final node.

Press Ctrl - C
on your
keyboard to
copy them to
the clipboard.

Switch back

to the activity
diagram Get

Product.

Paste the
copied items
with Ctrl - V.
Note that
MagicDraw
copied the
control flows,
too, although
they were not
selected.

Copying UML symbols from one diagram to another results in duplicate elements in the
containment tree with the same name. The duplicated elements exist twice, in the activity tree of the
source diagram as well as in the activity tree of the target diagram.

Copying UML symbols within the same diagram only results in copying the graphical element - the
symbols. The same symbol appears twice in the diagram pane, but the UML element in the
containment tree only once. Symbols are only representations of the UML elements in the
containment tree.

Deleting the UML element in the containment tree would remove all symbol representations in the
diagram pane.

In order to create a duplicate UML element within the same diagram, paste the copied symbol with
Edit - Paste with New Data or Ctrl - E. In this case, MagicDraw will not only create a new symbol
with a new name but also a new element in the containment tree.

activity Activity Diagram GetProduct [[] Get Prodict)]

Rearrange
the UML
symbols and

inputTitle : String

«ActionScripts
Get Title
[{script = "set

outputTitle =
inputTitie.toUpper();"s

=]

outputTitie : String

activity Activity Diagram GetProduct[[] Get Proauct]|

T

3 inputTitle : String ﬁ

osmraa]

«ActionScripts
Get Title

inputTitie toUpper()”}

outputTitle : String.

delete the
control flow
between the
action node G
et Title and
the final node
by pressing Ct
rl - D.

Ctrl -D
deletes
not only
the
symbol
in the
diagram
pane but
also the
UML
element
from the
containm
ent tree.

Click the
activity
parameter
node inputTitle
and select Obj
ect Flow from
the smart
manipulation
toolbar. Draw
an object flow
to the action
node Get Title.

activity Activity Diagram Get Product [[5] Get Proauct)] Draw an
object flow
v from action Ge
<ActionScrpts t Title to
[Fomtrit sung S) parameter out
inputTite toUpper()} putTitle.
OF
Save H the UML model.
Mapping Input to Output
Containment o & X At the
B Y Q o - beginning of
5@ Dat the modelm_g
iP5 Aliases phase of t_hls
-Bg Base Components [E2E Bridge Base.xml] Web service,
-Bg Base Types [E2E Bridge Base.xml] you defined
-B3 Component View the classes
-E3 Overview for the input
-BR Process Tracing [E2E Process Tracing.xml] and output
BB Services data
BE-E3 GetProductService ructures.
= structures
<% Relations
= currencyCalculator
E-E InputProductRecord
- {3 +title : Base Types::String
- {3 +category : Base Types::String
- 3 +manufacturer @ Base Types::5String
- +seller : Base Types::String
- +sellerType : Base Types::String
- +priceUSD : Base Types::Float
- +link : Base Types::5tring
E-E OutputProductRecord
- {3 +Hitle : Base Types::String
- & +category : Base Types::String
- 3 +manufacturer : Base Types::String
- +seller : Base Types::String
- 3 +sellerType @ Base Types::String
- {3 +priceUSD : Base Types::Float
- +link : Base Types::5tring
- +priceCHF : Base Types::Float
- (b +exchangeRate : Base Types::Float
-|&] Product Query Classes
BB Ports

Remember that by defining dependencies between the attributes of the input and output class, the input
data can easily be mapped to the output data.

Now, you will initiate this mapping by using the <<Mapping>> stereotype in an action. This action then
will internally translate the declarations defined in class diagrams into a set of action script statements
that actually execute the mapping. Later on in this lesson when tracing the compiled service with the E2E
Analyzer, you can see this in more detail.

The input and output objects will be added to the diagram as parameters.

activity Activity Diagram Get Product [[5] Get Proauct)]

inputTitle : String

T

«ActionScripts

Get Title
script = "set
outputTitle =
inputTitie.toUpper();"}
-]

OF

0
w-z : string

of
bl
v
&
&

inputTitle : String

activity Activity Diagram Get Proguct [[] Get Product)]

«ActionScripts
Get Title
[{script = "set
outputTitle =
inputTitie toUpper()"}

Map Product
Record Data

@) -

Sy iy D SetProsseE GetProsue

cAdionScripts
Get Title

e

outpuTite =
inputTile toUpper()"}

Hap Product
Record Data

inputProductRecord : InputProductRecord

Select the Co
ntrol Flow
icon from the
smart
manipulation
toolbar and
draw an
action node
below Get
Title.
MagicDraw
draws both
the control
flow and the
action node.

Start directly
typing the
action node
name Map
Product
Record Data.
Finish the
entry with Ent
er.

Add the
parameters in
putProductRe
cord and outp
utProductRec
ord to the
diagram.
Select them in
the
containment
tree (below
the activity Ge
t Product)
and drag

them to the
frame borders
of the

diagram pane.

aciniy Acty Diagram Get Product(5 Getroduct Select the
action node M
e ap Product
i GetTue Record Data
e st | st ; P PP) -
= ttos S —— O with the right
mouse button
,,,,,,,,, _ and choose St
Er o ereotype.
: tecord : OutputProductRecord
®
Start typing ma
Select Stereotype: i
- to filter the
|m | list. Select Ma
pping and
5 matches found click Apply.

Mapping [Action]

[] o SystemAdapter [Action]

[] #* CustomImageHolder [Element]
[] —r FileSystemadapter [Action]

[] —MemoryAdapter [Action]

| Apply [\Jl Clear all Order

aciniy Actiy Diagram Get Proauct(5 Getroduct

<AdtionScipts
Get Title

nputTite: String | scipt = set

The
stereotype <<
Mapping>>
specifies the

outpuTitle =

g <apping> =]
Hap Product
Record Data

inputProductRecord : InputProductRecord

g action Map

Product
Record Data
as a special
action having
no action
script. The
mapping
stereotype is

[copuprommeiRecard OupprotieRazard| indicated by

inputProductRecord : InputProductRecord

|| n

17

aciniy Actiy Diagram Get Proauct((5 Getroduct

nputTite: String | scipt = set

the icon =
in the upper
left corner of
the action
node.

The data
mapping is
done as
defined in the
class diagram
Product
Query
Classes. The
involved
classes are
identified by
the object
flows
connected to
this mapping
action.

Click the
parameter inp
utProductRec
ord and

select Object

........ Cbject Flow]| Flow from the

smart
manipulation
toolbar.

Draw an
object flow
from
parameter inp

outpuTite =
inputTiie toUpper(:"}

<hlappings

q Hap Product
Slaikeah i Record Data

®

g utProductRec

outputProductRecord :

ord to action
Map Product
Record Data.

OutputProductRecord

As the currency conversion is not done yet, the output data of the mapping action will not flow directly to
the output parameter outputProductRecord, but will be temporarily stored in a Central Buffer Node.
This UML symbol is used to store information only within the activity diagram. The information is not
passed outside the context of the activity diagram.

| | | |
.)
zMappings= |=| -
Map Product =
Record Data jﬂ o
| B B B |]
actvty Actity Diagram GetProguc{ [GoProduct)]
e g |t~ o
(inputTitle toUpper();"}
[L I T
‘outputProductRecord : OutputProductRecord
3 £
Specification of Central Buffer Node properties N
Specify properties of the selected Central Buffer Node in the properties specification table. Choosa the
Expert or All options from the Properties drop-down list to see more properties. l
/2
outputProductRecord
i |5 stop Properties: Standord
B central Buffer Node
Name outputProductRecord
Owner 43 Get Product(outputTitle : String, inpu...

Applied Stereotype

(Description)

Traceability Type & outputProductRecord [Services:: GetP...
Selection
In State
Is Control Type [false
Ordering FIFO
Ta Do
(Name)

Close %

Help

Click the
action Map
Product
Record Data
and select Obj
ect Flow from
the smart
manipulation
toolbar.

Click the
diagram pane
next to the
action node M
ap Product
Record Data
to create a
central buffer
node. Action
node and
central buffer
node will be
connected by
an object flow
automatically.

Double-click
the object to
open the
specification
dialog.

Assign the
name outputP
roductRecord
and select the
type OutputPr
oductRecord
from the type
list.
Remember
that the list
can be filtered
by typing the
initial
characters in
the field Type.

Note, that the
object has the
same name
and type as
the parameter.

Click Close.

While the central buffer node is used for the object flow within the context of the activity diagram, the
activity parameter node is used to pass the data to the outside context. The object flow only leads to the
parameter node when the object outputProductRecord does not change its state anymore. Here, this

will be right after the currency calculation that is implemented further below.

Save E the UML model.

Using Call Operation Actions

In the next step, you will call a class operation in order to get the exchange rate for CHF / USD. The
operation getExchangeRate is a member of class CurrencyCalculator. The operation returns a
parameter called exchangeRateCHFUSD being of type Float. In UML, operations are called using Call

Operation Actions.

actiy Actity Dlagram GetProducti [GetProduct

<Actonscripts
GetTitle

inputTite: String |t "sat.

InputTtietoUper(:

M«M::zﬂnl I ccentalBufters
lap Product :
hop Prodnct g outputProductRecord : OutputProductRecord

®©

‘actiy Actty Dlagram GetFrouct[[GetPraduct

Fr T
ot
[i |~ s
:

loutputTite =
linputTitle-toUpper()"}

= e ccentalBufters
op Présuc !
[noutProductRecord : mputProductRecord | b B oupuProduciRecord: OutputproductRecord

O CallBehavior Action
& Dedsion

£ Merge

&= Join Horizontal
e Fork Horizontal

@ CollOperation Action

@ Actviy Final

{8 Structured Activity Node

®

Select, search for, or create an element s a

Search for an element by using list or tree views. To find an element . P =
type text or wildcard (*,?) into the "Search By Name” input field. Qé ?D

Search elements by their qualified names or use camel case when

searching if the appropriate mode is enabled. l\

outputProductRecord : OutputProductRecord

® FlowFinal ‘outputProductRecord : OutputProductRecord

Search By Name:

getExd

B2 Tre=

= List‘

E: B B BY 1 matdh found

% <UNSPECIFIED>
E-G= Data (1 match)
B}-Bx Services::GetProductService::Classes (1 matrh)
EHE currencyCalaulator (1 match)
[N N +-getExchangeRate(exchangeRateCHFUSD : Base Types::Float)

pd E Creation Mode

Lo §|Cancel|| Help

Click the
action node M
ap Product
Record Data
and select Co
ntrol Flow
from the
smart
manipulation
toolbar.

Move the
mouse cursor
down, but this
time click the
right mouse
button. A list
of possible
UML symbols
appears.

Choose Call
Operation
Action.

In the Select
Operation
dialog, filter
the list by
typing getExc
and select the
operation getE
xchangeRate.

Click OK.

Call operation
actions and
call behavior
actions may
have input
and output
pins. An input
pinis a pin
that holds
input values
to be
consumed by
an action. An
output pin is a
pin that holds

'@ exchangeRateCHFUSD : Base Types::Float (Parameter: exchang

Clear Al Select All output values
Layout options produged by
an action.
(@) TopfBottom (") Left/Right
In the Select
Pins dialog,
click OK.

The call operation action node is displayed in a different color than normal actions. It visualizes an action
calling an operation. The name of the called operation is displayed in the call operation action node.

As the operation getExchangeRate has the output parameter exchangeRateCHFUSD, an output pin is
docked to the action node. Name and type of the object is displayed next to the pin. By default, a target
pin is created automatically, too (see orange mark in the picture below).

For static operations, target pins are not necessary and must be deleted. The target pins are only
needed for non-static operations.

Delete the target pin. Remember to use Ctrl - D to delete the element and not only its symbol.

Sciviy Actiiy Diagram GetProductl GetProguct

cAdionScripts

DY
HoutTide: |{script = "set
A]
inputTitie toUpper(;7y

«llapping
Wap Product

[o)

ccentralBufters
outputProductRecord : OutputProductRecord
‘exchangeRateCHFUSD - Float

outputProductRecord : OutputProductRecord

O]

An output pin holds output values produced by an action. The value can be delivered to other actions via
object flows. At the same time, objects can be transformed to other objects having a different name using
pins. This increases modeling speed and helps avoiding modeling errors. It would be equivalent to use a
central buffer node instead of a pin, however, it is best practice to use pins in this case.

As it is an output pin and in order to visualize the information flow, we recommend dragging the output
pin to the right border of the call operation action node.

aciviy Actty Dagram GetProsoe ([GetProduct]
(acivty Actvity Diagram GetProcuct [GetProcuct]

outputTitle outputTitle : String

Mappings x|
Map Product

Record Data

getExchangeRate
(CurrencyCalculator:)

e)

centraiBufers
outputProductRecord : OutputProductRecord

exchangeRateCHFUSD : Float

outputProductRecord : OutputProductRecord

®

Save H the UML model.

Using Action Script

In the next (and last) action, you will use the float exchangeRateCHFUSD, which was received from
operation getExchangeRate, in order to convert the price in USD to the price in CHF. The price in USD
was taken from the input object (inputProductRecord) and has already been mapped to the object outp
utProductRecord. In the next step, you will update this object with the calculated price in CHF and the
exchange rate, before the object is returned to the calling client.

Completing the Object and the Control Flow

Before editing the action script of the next action, you will first complete the control and the object flow.
Having completed the object flow you get full editing support of the Action Script Editor.

actiy Actity Disgram GetProoudt 5 GetProduct)] Select the call
operation
T action getExc
[T T AR N hangeRate
[pae: s B 1 9
e h— and choose C
= «centralBuffers OntrOI FIOW
e e from the
b smart
. u | dcormirion] . .
B onscnomg - ranseaecHrys0: i manipulation
- - toolbar.
x .
®
actity Actiity Diogram GetProouct 5 GetProduct 1] Draw a new
action node
and
e
[iputtinesung | o R immediately
e = start typing its
T name Set
e Rerorsbon Price CHF
and
SeiExchangeRats)., exchangeRateCHEUSD : Foat Exchange
Gunencrcakuaor)
Rate.
[oupupraduemocors:oupuiaducecaa |
O]

The new action Set Price CHF and Exchange Rate needs some input data: the exchange rate and the
output product record data, which has to be updated.

activity Actiity Diagram Get Product!] Get Product] Select the
output pin exc
S hangeRateCH
o™ R FUSD and
vt = choose Object
g Flow from the
e o] e smart
manipulation
_ i npeRaCHFUSD Fiaat toolbar.
Commocan s
[oupupradsemocors: oupetaducecaa |
®
(actvty Actvty iagram GotProcuct [Getroduct]] Draw a object
flow from the
SRR output pin to
S
i g E | th e new
[ttt topos i action node S
- et Price CHF
e s) s and
Exchange
Rate.
SetPres CoF o Sxchenge o
e
[oummpradsemocors: oupraduciacaa |
®
(actnity Activy iagram Get Product(] et Product]] Now, draw an
object flow
from the
S central buffer
[=]
e = node outputP
- roductRecord
[rrotsceors puraetiocos | wopprsc ottt Oupcecors (to which the
. . input product
excnznqek:«ecurusb Fioft record data
— -) had been
mapped) to
[Gotpres o ans cnmoorir
o) the new
action node
[Suuroticiecors: oupmpradueiscod| -
as well. This
is required, as
the action
needs the
® reference to

this object in
order access
and update its
attributes.

Now, the processed data must be passed to the output parameter.

aciity Actiy Diagram GetProcuc]] GetProduct

“ActionScipts
GotTitle
{(scrpt = “sat

inputTite : String

ulTitle =
InputTite toUpper()"y

«appings

[T L B)

=l «centralBuffers.
Hap Product outputProductRecord : OutputProductRecor
o e fputProductRecord :OutputProductRecord

exchiangeRateCHFUSD : Flogt

outputTitie: String

®

ity Acthity D GotProduc] GotPreaue]

GatTite
gt g |t =-s 3
s
(inputTitle toUpper()."}

«Mapping>
Hap Product
Record Data

()

Processing the Data Using Action Script

Draw an
object flow
from action
node Set
Price CHF
and
Exchange
Rate to the
output
parameter out
putProductRe
cord.

Finally,
complete the
control flow
by connecting
Set Price
CHF and
Exchange
Rate to the
activity final
node.

In the next modeling step, you will define the action script of the action Set Price CHF and Exchange
Rate. Within this action script, you will set the exchange rate to the output parameter and perform the

currency calculation.

acity AcityDiagram Gotroauct 5 Gotrasct]

<diappings
Hap Product

[=

(e S

T

SotPrics CHF and xchapas e
= Speccaton

SymbolPropeis
26 Acon st Edter
2 Ackon Wird

‘Add Breakpoint
Remove Breakpoint

Related Elements
Refactor

Tools

Edit Compartments

Stereotype

&

centalBufers
outputProductRecord : OutputProductRecord

exchan —RateCHFUSD : Flogt

Enter
A+Enter
Ctl-Enter
AW

culeT

lo String

bauctRecord

OutputProductRecord

Click the
action node S
et Price CHF
and
Exchange
Rate with the
right mouse
button and
select Action
Script Editor
from the
context menu.

File Edit View Code Global Ops

Set Price CHF and Exchange Rate

21

Action Script

Find: |© @ [IMatch Case [Repeats

I—'—I

L] E2E Action Script Editor
Fle Edt View Code GiobalOps

Record

Set Price CHF and Exchange Rate

“AdonScripts
GetTitle

“appngs ||
Hap Product

actniy Acty Disgram GotFroduct B GetProa

Data

T

Specifcation
Symsol Properties

Enter
Atotnter

Goto

e

Relsted Eements

il |© © &) OMawhcase [JRepeats

== |

culeT

The E2E
Action Script
Editor opens.

Remember
that you
defined the
attribute exch
angeRate in
class outputP
roductRecord

Although the
Action Script
Editor is
open, you can
check the
class
attributes in
between.

Select the
central buffer
node outputP
roductRecord
and select Go
To > Type
OutputProdu
ctRecord
from the
context menu.

B v Q o -

== Data s
B Aliases
‘Bg Base Components [E2E Bridge Base.xml]
‘Bp Base Types [E2E Bridge Base.xml]
B3 Component View
-E3 Owerview
‘BR Process Tracing [E2E Process Tracing. xmi]
=B services
E|E| GetProductService

ElE5 Classes
-3 Relations
-] CurrencyCalculator
ElE InputProductRecord

- +Hitle : Base Types::String
+category : Base Types::5tring
+manufacturer : Base Types::5Siring
+seller : Base Types::String
+sellerType : Base Types::String
+pricelUSD : Base Types::Float

- +Hink : Base Types::String
-5

- +itle : Base Types::5tring
+category @ Base Types::5tring
+manufacturer : Base Types::String
+seller : Base Types::Siring
+sellerType : Base Types::String
+pricelUsSD : Base Types::Float
Hink : Base Types::String
+priceCHF : Base Types::Float

+exchangeRate : Base Types::Float

Product Query Classes
BB Ports
= GetProductPortType
E} o +getProduct{ inputTitle : Base Types::String, oul +,

£ >

2000000

20000000

The class
definition of O
utputProduct
Record gets
selected in
containment
tree.

Expand the
tree to view
all attributes
of OutputPro
ductRecord.
In the
meantime, the
Action Script
Editor stays
open.
Continue
working in the
Action Script
Editor now.

You can reference the attribute exchangeRate of class outputProduct-Record by writing the object
name followed by a dot and the attribute name (outputProductRecord.exchangeRate). Use the set
assignment statement in order to assign a value to an attribute being of a base type (here Float).

File Edit View Cede Gleobal Ops

Set Price CHF and Exchange Rate }I

Action Script

set | = ~
iexchangeRateCHFUSD
outputProductRecord

x5
Find: |) © [£] [MatchCase [|Repeats

Adding a
space after
set lists all
available
objects of the
current action.
Select the
object output
ProductRecord
and press Ret
urn.

File Edit View Code Global Ops
Set Price CHF and Exchange Rate }I
Action Script
set outputProductRecord.| =]
icategary : String ~
iexchangeRate : Float
link : String
manufacturer : String
lpriceCHF : Float
lpricelJSD : Float
izeller : String
sellerType : String
title & String
IdassTolS0N (options : ComposerOptions) : String v
v
I 1:25 I
Find: | (2 @ [£] [MatchCase [|Repeats

Now, you
need to
reference the
attribute exch
angeRate of
the object out
putProduct
Record.

After adding a
dot behind the
object name,
all attributes
of the object
(blue) and all
available
operations
(green) will be
listed. The list
of operations
contains the
operations of
a
corresponding
base class
(for instance a
String) as well
as Any Type
Operations
(operations
that are
applicable to
any possible
type).

Select the
attribute exch
angeRate.

The notion exchangeRate:Float in the suggestion list indicates that the attribute is of base type Float.

o]
File Edit View Code Global Ops

Set Price CHF and Exchange Rate

E2)

‘Action Saript

set

_ Al

exchangeRateCHFUSD

outputPreductRecord

leapture(string : String, regExpPattern : String) : String|
(castValue(siring : String) : Any

[convertBases ToBlob(string : Siring) : Blob
[convertDurationToDateTime (string : String) : DateTime
|convertHexToBlob string : String) : Biob
lconvertToBoolean(string : String) : Boolean

lconcat(string : String, string1 : String, ... : String) : String

0

lconvertToD. + String) : DateTime v
[e
Finds | ©® @ [2) [IMatch Case [Repeats

Note that an
equal sign (=)
has already
been added
after entering
set.

Go to the end
of the line and
press Ctrl - Sp
ace to force
the list of
suggestions
for possible
input objects.
Select exchan
geRateCHFU
SD.

If Action Script Editor does not offer you the accessible objects automatically, you can force the list
of suggestions by pressing Ctrl - Space.

Every action

script
File Edit View Code Global Ops statement has
Set Price CHF and Exchange Rate }I to be finished
with a
Action Script semicolon (;),
set outputProductRecord. Rate = nnr.eCHFUSD." & WhICh you

have to add to
complete the
statement.

I 1:59 I

Find: | @ 8 [IMatch Case [Repeats

In the second action script statement, you will perform the currency calculation. The price in USD will be
converted to the price in CHF. You will use arithmetic operators in the set assignment statement and
assign the value of attribute priceUSD multiplied with the value of object exchangeRateCHFUSD to the
value of attribute priceCHF.

Enter the following action script using the script editing features.
set out put Product Record. pri ceCHF = out put Product Record. pri ceUSD *
exchangeRat e CHFUSD;

The factor exchangeRateCHFUSD is known within the action script as it was passed into the action
node via the output pin of call operation action getExchangeRate.

The action
script is
File Edit View Code Global Ops complete.
Set Price CHF and Exchange Rate }I
Press the Ctrl
Action Script - Enter keys
set putputProductRecord.exchangeRate = exchangeRateCHFUSD; ~ to close the

set outputProductRecord.priceCHF = outputProductRecord.pricelSD

Action Script
* exchangeRateCHFUSD;

Editor.

=
Find: |© @ [IMatch Case [| Repeats

The action script is now shown in the tagged value script within the action node Set Price CHF and
Exchange Rate. Note that the stereotype <<ActionScript>> was applied to the action node as well.

aciviy Actty Dagram GetProsoe ([GetProduct]

inputTite: String
outputTite : String
SRR (] «centralBufers
InputProductRecord : putProductRecord Map Product outputProductRecord : OutputProduciRecors
ado Exodict putProductRecord :OutputProductRecord

getExchangeRate
(CurrencyCalculator:)

exchangeRaleCHFUSD : Flogt

AdionScripts -
Set Price CHF and Exchange Rate

script = set
outputProductRecord exchangeRate
‘angeRateCHFUSD;

>f outputproductRecord : OutputProduciRecord

et outputProductRecord priceCHE
= outputProductRecord priceUSD *
exchangeRateCHFUSD;)

Save H the UML model.

Next, you will implement the class operation getExchangeRate().

Implementing the Class Operation

Besides attributes, there are operations that are defined on classes. Basically, these operations can be
called within a service instance but not externally by other processes, clients, etc. However, if you like to
publish class interfaces, for instance as Web service interfaces, you can give the class the stereotype <<
E2ESOAPPortType>>. A port type accumulates operations that a client can call on a Web service. If you
want to publish other interfaces like SAP RFC modules or HTTP operations, the Bridge provides other
appropriate stereotypes.

While defining the Classes you defined the class CurrencyCalculator, which has no attributes and one
operation getExchangeRate.

The operation getExchangeRate is defined as static. That means, no instance of the class has to be
created to use the operation. In chapter Using Call Operation Action, you directly called this operation
in the activity diagram via the Call Operation Action, in order to get the exchange rate for the currency
conversion.

Now, you will implement this operation in the activity diagram, you already defined before. It is already
assigned to the class operation getExchangeRate. The activity diagram is located in the containment
tree directly within the class element. Navigate to the activity diagram Get Exchange Rate (in Data -
Services - GetProductService - Classes - Currency Calculator) and open it.

Now add the required diagram components. Add the following to the diagram pane:

® an initial node @
® an action node
® and an activity final node i

The most effective way to draw this is described below.

activity Activity Diagram Get Exchange Rate[@ Get Exchange Rate y

Start

activity Activity Diagram Get Exchange Rate [@ Get Exchange Rate u

Start

. Ek L
| .| Control Flow

activity Activity Diagram Get Exchange Rate [2] Get Exchange Rate u

]

]

&% Decision

¥ Merge

Join Horizontal

Fork Horizontal

Call Operation Action
Activity Final

Flow Final

ge®@kE

Structured Activity Node

) Call Behavior Action I

First, add an
initial node to
the activity
diagram.

Just after
drawing the
UML element
start typing a
name. Assign
the name Start

Select the
initial node
and choose
the Control

Flow icon
from the
smart
manipulation
toolbar.

Drag the
control flow
downward
and right-click
on the
diagram pane
below the
initial node.

From the
context menu,
select Call
Behavior
Action as
node type the
control flow is
leading to.

activity Activity Diagram Get Exchange Rate[@ Get Exchange Rate y

Start

m1 Exchange ‘m
Rate]

activity Activity Diagram Get Exchange Rate [3] Gs%t Exchange Rate y

]

]
Start

Call Behavior Action
Decision

Merge

Join Horizontal

Fork Horizontal

Call Operation Action
Activity Final

Flow Final

Structured Activity Nede

de®@d L0

activity Activity Diagram Get Exchange Rate [[ZF] Get Exchange Rate U

Start

®

End

Assign the
name Define
Exchange
Rate.

Select the
action node
and draw
another Contr

ol Flow
again. As
ending point
of the control
flow select Act
ivity Final.

Assign the
name End.

The activity
diagram
should look
like this.

Giving initial and final nodes names makes maintaining and debugging the Web service easier, as
they can be identified via their name. Especially if there are more ending points in the same diagram
we recommend giving them a name. Note that the names are displayed in the containment tree now.

activity Activity Diagram Get Exchange Rate [[5] Gét Exchange Rate |]

Start

il 7| Exchangetar

&

End

Define:
Exchange [E—
| Raie USD:

Select the
parameter exc
hangeRateCH
FUSD in the
containment
tree.

Asitis an
output
parameter,
drag it on the
diagram pane
on the right
border of the
diagram.

Draw an
object flow
from the
action node to
the output
parameter.

Frequently, it is necessary to store literals global to an XUML service. In the Bridge context, it is possible
to define name value pairs that are configurable by the E2E Embedded Runtime respectively the E2E

Bridge. These name value pairs are called settings.

For the moment, you will hard code the exchange rate as a fix value that can be edited via the xXUML
service settings. In lesson 3, you will extend the service by implementing a call to an external Web

service in order to get the exchange rate.

File Edit View Code Global Ops

Define Exchange Rate }I
‘Action Script
set exchangeRateCHFUSD = s "‘

lsetting(name : String, defaultValue : Boolean) : String
lsetting(name : String, defaultValue : Float) : String
lsetting(name : String, defaultValue : Integer) : String
lsetting(name : String, defaultValue : String) : String
lsplit{string * String, regExpPattern : String) : String[]
lstartsWith(string : String, start : String) : Boolean
IstringLength(string : String) : Integer

lsubstringAfter(string : String, searchString : String) : String
lsubstringBefore(string : String, searchString : String) : Strin

lsubstring(string : String, startIndex : Integer, length : Integer) : String

Il 1:37 I
Find: @ @ [=] [Match Case [|Repeats

Open the Acti
on Script
Editor and
start with the
set
assignment
statement:
set
exchangeRat
eCHFUSD =

After the
equal sign,
type s and
open the
suggestion list
with Ctrl - Spa
ce. Select the
second
setting
statement
offered as you
want to
assign a float
value.

Replace the n
ame by
"exchange
Define Exchange Rate rate CHF -
}I usD".
Action Script Replace
set exchangeRateCHFUSD = setting("sxchange rate CHF - UsSD", 2 defau|tva|ue
1.0858) ;| by, for
instance,
1.0658.
This
statement will
create a
configurable
setting of the
xUML service,
v whose value

| =7 | is assigned to
Find: | (@ @ [£] [MatchCase [|Repeats the variable ex
changeRateC

HFUSD.

Finish the
statement
with a
semicolon
and close the
Action Script
Editor.

File Edit View Code Global Ops

The implementations of the activity diagrams are finished now.

activity Activity Diagram Get Exchiange Rate [[5] Gel Exchange Rate]]

Start

ActionSeript:
Define Exchange Rate . = usD:

[{script = "sst

exchangeRateCHFUSD
= setting(excnange
rate CHF - USD",
1.0858)}

Save n the UML model.

The next step in the development process is to modify the component diagram.

	Activities Lesson 2 MD18

