
Classes Lesson 2 MD18

In the next modeling step, you will learn how to model data structures. You will start modeling a class that
stores input data of the new Web service. Data structures are modeled with classes that are visualized in
class diagrams. Objects, which are instances of these classes, will be used during the modeling process
in activity diagrams.

Defining the Classes
In the containment tree, select the package with the right mouse button and select Classes Create

.Element > Class

The new class will store data that
is entered by the actor. A data
record represents a product.

Assign the name InputProductRec
 to the new class.ord

In the next step, you will define the properties of the new class by adding attributes. Select the class with
the right mouse button and select as shown below.Create Element > Property

Web Service Interface

On this Page:

Defining the Classes
Defining Dependencies
Defining the Currency
Calculator

https://doc.scheer-pas.com/display/ACADEMY/Web+Service+Interface+Lesson+2+MD18
https://doc.scheer-pas.com/display/ACADEMY/Web+Service+Interface+Lesson+2+MD18

Assign
the name

 to title
the first
attribute
of the
new class.

Now,
define the
new
attribute
to be of
base type

.String

Double-
click the
attribute
node in
the
containme
nt tree to
open the

 Property
specificati
on dialog.
Click into
the Type
field and
start
typing str
on the
keyboard
to filter
the list.
Select Stri
ng [Base

 Types]
with the
arrow
keys and
press Ent

.er

Always make sure to select the E2E base types and the types that are part of the UML standard not
profile (see in the field.String [UML Standard Profile...] Type

Click the
pull-down
menu Visi

 and bility
select pub

.lic

Public
attributes
can be
read and
modified
in
activities
defined
outside
the class.
Normally,
you will
use
public
visibility
in E2E
xUML
service
context.
You can
set the
default
visibility
of a
project to

, public
so you
will not
need to
change it
every
time. How
to change
the
default
visibility
of a
project is
described
here: Attri
bute
Specificati
on >

.Visibility

Do not
change
any other
settings
and close
the dialog.

https://doc.scheer-pas.com/display/BRIDGE/Attribute+Specification#AttributeSpecification-Visibility
https://doc.scheer-pas.com/display/BRIDGE/Attribute+Specification#AttributeSpecification-Visibility
https://doc.scheer-pas.com/display/BRIDGE/Attribute+Specification#AttributeSpecification-Visibility
https://doc.scheer-pas.com/display/BRIDGE/Attribute+Specification#AttributeSpecification-Visibility
https://doc.scheer-pas.com/display/BRIDGE/Attribute+Specification#AttributeSpecification-Visibility

You will
now add
the other
attributes
directly in
the Class
specificati
on dialog.

Select the
class with
the right
mouse
button
and
select the
menu
item Spec

.ification

Click the
item Attri

 in butes
the left
navigation
panel.
The Class
specificati
on dialog
shows all
class
attributes
in form of
an
editable
table. The
previously
defined
attribute ti

 is tle
visible,
too.

Click the
 Create

button to
add
another
attribute.

Enter the
attribute
name cat

, egory
set the
type to Str

, and ing
the
visibility
to .public

Click the
 Close

button to
return to
the
attribute
list.

The
second
class
attribute
is defined
now.

Now, add the following attributes to the class. Pay attention to correct spelling.

Name Type Visibility

manufacturer String public

seller String public

sellerType String public

priceUSD Float public

link String public

The class Inp
utProductRec

 with ord
seven
attributes is
completed.

Click the Close
button.

The new
attributes are
listed in the
containment
tree as well.

In the next modeling step, you will draw the previously defined class in the diagram pane. Select the
package in the containment tree and create a new as shown below.Classes Class Diagram

Assign the name Product Query
 to the new class diagram. Classes

The new class diagram will be
opened in the diagram pane.

Select the class in the containment tree and drag and drop it onto the diagram InputProductRecord
pane.

Now, the class with its attributes and attribute types is displayed on the diagram pane. The sign in front +
of each attribute indicates that their visibility is .public

Each instance of the class represents a product. You have defined the attribute in the class priceUSD Inp
. Later in the example, you will convert the price for each product into another utProductRecord

currency. In order to perform this calculation, you will use exchange rates that are provided by another
class, you will define later on.

The result of the currency calculation will be stored in an output class identically equal to InputProductRe
, but this class will have additional attributes to store the converted price in CHF and the exchange cord

rate.
The easiest way to create the output class is to copy and modify the input class.

Navigate to
the InputProd

 uctRecord
class in the
containment
tree, select it
with the right
mouse button,
and click Copy
.

Then, select
the package C

 with lasses
the right
mouse button
and click Paste
.

The new
inserted class
automatically
gets assigned
the name of
the copied
class, with the
figure 1
appended to
it: InputProdu

.ctRecord1

Double-click
the class Inpu
tProductReco

 and rd1
rename the
class to Outpu
tProductReco

. rd
Switch to the
tab .Attributes

Click and add the following attributes.Create

Name Type Visibility

priceCHF Float public

exchangeRate Float public

Add the new class to the class diagram, which afterwards should look like shown in the picture below.

Save the UML model.

Defining Dependencies
The Web service will return the input product data and additionally the converted price in CHF and the
applied exchange rate.

By defining between the attributes of the input and output class, the input data can easily Dependencies
be mapped to the output data. Thereby, the direction of the defines the direction of the Dependency
information flow. Later, when implementing the behavior of the service in the activity diagram, you will
initiate this mapping by using the in an action.<<Mapping>> stereotype

Choose a from the diagram toolbar.Dependency

Move the mouse over the first attribute of class until the blue activation frame appears.category InputProductRecord

Left-click and drag the dependency line to the corresponding attribute of the other class . When the blue frame category OutputProductRecord
appears, click again to draw the dependency.

The arrow may not be drawn as a straight Dependency
line as shown in the example on the left.

You can reroute the arrow by clicking and dragging the
black handles of the line. Alternatively, you can already
route the path of the arrow while drawing it (see next
step).

Choose another dependency from the diagram toolbar.
Click the attribute of class . title InputProductRecord
On your way to attribute of class title OutputProductRec

 click on the diagram pane to curve the line.ord

Draw dependencies from all attributes to the corresponding attributes of class InputProductRecord Outp
. utProductRecord

Now, the class diagram should look like shown in the picture below.

Save the UML model.

Defining the Currency Calculator
The currency calculator will be implemented in a separate class. In lesson 3, you will extend this class to
call an external Web service.

In order to
create the
class, you will
use a different
technique.
Select the
icon Class
from the
diagram
toolbar and
place it on the
diagram
pane.
Immediately,
start typing
the name Curr
encyCalculat

. Then, or
press Enter
to finish
entering the
class name.

The class will have a class operation that will contain the implementation of the CurrencyCalculator
currency calculator. It does not need to have any attributes, yet. Select the class in the containment tree
an choose from the context menu.Create Element > Operation

Enter the
name getExc

.hangeRate

Double-click
the Operation
in order to
open the Spec

 ification
dialog. Set
the Visibility
to .public
Then select
the checkbox I

 to set s Static
this option to t

.rue

If you call
class
operations,
you normally
have to create
an instance of
a class. This
instance
makes the
operation call.
If a class
operation is
defined static,
it is not
necessary to
create a class
instance.
Static
operations
can be called
directly in the
action script.

The operation
will return the
exchange rate
CHF/USD.

Switch to the
 Parameters

tab and click C
.reate

Assign the
name exchan
geRateCHFU

, the type SD F
loat [Base

, and Types]
set the
direction to out
as the
operation will
return this
parameter.

Click .Close

The
parameter exc
hangeRateCH

 is FUSD
shown in the
list Parameters
.

Click .Close

After creating this class, the class diagram should look like shown in the picture below.

Activities implement the behavior of operations. Each class operation has to be assigned to its
implementing activity diagram. When the operation is called, the assigned activity diagram will be
executed.

The activity diagram implementing the class operation has not been created yet. In getExchangeRate
the next step, you will directly assign a new activity diagram to the operation . getExchangeRate
Select the operation in the containment tree with the right mouse button and choose getExchangeRate B

.ehavior Diagram > Assign…

The Assign
Behavior

 Diagram
dialog
displays a list
of existing
activity
diagrams that
can be
assigned to
the operation.
However, this
operation gets
assigned a
new activity
diagram.
Click the New
button.

Choose Activi
 ty Diagram

from the drop
down list.

The Specifica
 dialog of tion

the new
activity
diagram
opens.
MagicDraw
automatically
creates an
activity
diagram and
gets the name
from the
context of the
operation: Cur
rencyCalculat

.or

Click .Close

The new
activity
diagram
CurrencyCalc

 is now ulator
listed in the As
sign
Behavior

 Diagram
dialog. It is
displayed in
bold
indicating that
this is the
activity
diagram
assigned to
the operation.

Click .Close

Expand the
activity Curren

 cyCalculator
in the
containment
tree. The
activity has
been created
automatically
and contains
the activity
diagram
having the
same name.
MagicDraw
uses the
activity
diagram
name as
default name
for the
activity.
Furthermore,
all parameters
and activity
parameter
nodes are
created
automatically,
according to
the class
operation
parameters.

As the name
of an activity
should always
correspond to
the operation
it specifies,
select the
activity Curren

 cyCalculator
in the
containment
tree and
rename it to G
et Exchange

.Rate

Note that
MagicDraw
renamed the
corresponding
activity
diagram as
well.

The created activity diagram is displayed in the diagram pane:

The implementation of the operation will be explained later when you will be getExchangeRate
specifying the .Activities

Save the UML model.

If you double-click the operation in the containment tree, the assigned activity getExchangeRate
diagram will always be opened in the diagram pane.Get Exchange Rate

https://doc.scheer-pas.com/display/ACADEMY/Activities+Lesson+2+MD18

	Classes Lesson 2 MD18

