
Activities Lesson 1 MD18

In UML, activity diagrams are used to model the behavior of operations, classes, or use cases. This
chapter describes how activity diagrams are used to model the behavior of . Activity diagrams operations
describe actions that shall be executed in a specific order (control flow) and how data is being
transformed (object flow).

There are several types of actions. For the implementation of operations, the Bridge supports the
following kinds of activities:

 are used to describe actions applied to objects or the environment. They may contain Actions
so-called action scripts, or can be stereotyped signaling a special kind of an action. For instance,

 <<SQLAdapter>> actions apply actions to SQL databases.
 give a link to other activity diagrams. Therefore, it is possible to Call Behavior Actions

decompose the behavioral logic into smaller units of activities.
 can be used to call class operations encapsulating specific behaviors.Call Operation Actions

Besides designing the with actions, there are objects that are part of defining an control flow object flow
in an activity. An object flow models the flow of values to or from object nodes. Objects may be input and
output of single actions, or input and output of activities.

Activities and Activity Diagrams

An activity () is created upon creation of an activity diagram (). It is containing all UML elements
that are used in the activity diagrams of this activity. An activity can have several activity diagrams, each
of them representing a special view on the activity (for instance, error handling could be placed in a
second activity diagram). However, in this course, only one activity diagram per activity is defined.

You will start by renaming the pre-defined activity and activity diagram.

Expand the
activity node I
mplementatio
n of

 Operation 1
in the
containment
tree and
rename the
activity.

Sequences

On this Page:

Activities and Activity
Diagrams
Adding Parameters to the
Activity
Designing the Control Flow
Designing the Object Flow
Using E2E Action Language
Creating Notes

https://doc.scheer-pas.com/display/ACADEMY/Sequences+Lesson+1+MD18
https://doc.scheer-pas.com/display/ACADEMY/Sequences+Lesson+1+MD18

The name of
the activity
respectively
the activity
diagram
should always
correspond to
the name of
the operation
it is specifying.

Assign the
name Get

.Title

Double-click the activity diagram in the containment tree in order to open it. The predefined activity
diagram already contains some UML elements in the diagram pane.

Each activity diagram needs a starting point called initial node. The initial node icon defines the start of
the activity behind the operation of a port type. An activity final node defines the end of an activity. In the
predefined activity diagram, the two nodes are already connected with a .control flow

 and icons can be found in the diagram toolbar:Initial Node Activity Final

The
correspo
nding
activity
diagram
has been
renamed
as well
by
MagicDra
w.

Adding Parameters to the Activity
An object is an instance of a class. It stores data that can be modified within activities. Objects may
originate outside of the context of an activity – in other words, they are input parameters to the activity.
On the other side, activities may produce objects that are used as output. Output objects can be used as
input of another action within the same context (the same activity diagram), or they can be passed as
output parameters to an outside context, which can be a calling activity or a port type operation.

In the following steps you will define the input and output parameters of the activity implementing the port
type operation . These parameters must have the same name, type, and direction (, , or getTitle in out ino

) as the operation parameters. The most efficient way is to copy the parameters in the containment tree ut
from the operation node to the activity node.

Open the
operation getT

 in the itle
containment
tree and
select the two
parameters in

 and putTitle o
.utputTitle

Next, hold
down the Ctrl
key of your
keyboard and
drag the two
parameters
over the
activity node.

Holding down
the key Ctrl
tells
MagicDraw to
make a copy
of the
parameters
instead of
moving them
from the
operation
node to the
activity node.
A -sign +
attached to
the cursor
arrow
indicates the
copy action.

Release the
mouse button
when the
activity node G

 is et Title
active.
MagicDraw
will create an
exact copy of
the operation
parameters
within the
activity.

Now, you will add the two parameters to the activity diagram in the diagram pane to model the object
flow. For this purpose, UML elements called are used. Each activity Activity Parameter Nodes
parameter node works as container of a parameter. When they are drawn in the activity diagram, they
have a different color than normal object nodes to indicate that these nodes contain activity parameters.

In order to visualize if an activity parameter node contains an input or an output parameter, you can place
them on the left or right side of the diagram frame. The left side corresponds to input, the right side to
output.

When copying the parameters from the operation to the
activity, you may have noticed that two activity parameter
nodes have been created automatically (see highlighted
area on the left). They have the same names as the
corresponding parameters.

Select the parameter in the containment tree.inputTitle

Using this method not only copies the parameter names, it also copies all the parameter properties
like type and direction.

As it is an input parameter, drag the selected parameter to the left border of the diagram frame until the diagram frame gets surrounded by a blue
rectangle.

Release the mouse button.

The input activity parameter node has been drawn in the activity diagram and shows the name and type
of the it is containing.parameter On the right side of the colon, the type of the parameter () is String
displayed.

Although you were dragging the and not the from the parameter activity parameter node
containment tree, MagicDraw placed the activity parameter node on the activity diagram. You could
have taken the activity parameter node as well.

Now add the output parameter to the activity diagram.

Select the parameter in the containment tree.outputTitle

As it is an output parameter, drag the selected parameter to the right border of the diagram frame until the diagram frame gets surrounded by a
blue rectangle.

Release the mouse button. The output activity parameter node has been drawn in the activity diagram
 and is displaying the name and type of the it is containing.parameter

Designing the Control Flow
Initial node, activity final node, and the two activity parameter nodes and have inputTitle outputTitle
been defined so far, but no action node yet.

You will now
add an action
to the activity
diagram by
selecting the A

 icon ction
from the
diagram
toolbar.

The most
efficient way
to insert an
action node in
an existing
control flow is
to drag it onto
this control
flow, which
will be split by
MagicDraw
automatically
without the
need to
reconnect the
initial node,
the action
node, and the
activity final
node
manually.

Drag the
action node
onto the
control flow,
which
connects the
initial node
and the
activity final
node. As
soon as you
move the -+
sign of the
cursor over
the control
flow, the blue
helper grid
line appears.
Release the
mouse button
to insert the
action node.

In the
following
dialog, click
the button Aft
er Control

.Flow

The action
node is now
integrated into
the control
flow. You can
place any
action with
the described
method into
control flows.

Double-click
the action
node to open
its
specification
dialog.

Name the
action Get

 and Title
close the
dialog.

This action currently does nothing. Before you add action script to the action in order to implement some
behavior, you need to complete the object flow.

Designing the Object Flow

Object flows capture how objects participate in activities and how they are affected by the activities.
Objects or data are passed along the object flow.
In activity diagrams, object flows are represented by slightly thinner lines than control flows. They model
the flow of values to or from object nodes. Object nodes may be input and output of single actions, or
input and output of activity diagrams.

The object is input of the activity (the input parameter is passed from the caller of the inputTitle
activity diagram - the assigned port type operation). The object will also be the input inputTitle
of the single action .Get Title
The object will be the output of the action . The object is also outputTitle Get Title outputTitle
output of the activity diagram (the output parameter is passed to the caller of the activity
diagram, which is the assigned port type operation).

You will now connect the objects and with the action .inputTitle outputTitle Get Title

Select the Obj
 icon ect Flow

from the
diagram
toolbar.

Move the
mouse cursor
over the
activity
parameter
node inputTitle
and click it
when the blue
activation
frame
appears.

Move the
cursor over
the action
node Get Title
and click it to
connect the
object flow.

Now, the
object flow
connects the
activity
parameter
node and the
action node.
The direction
of the arrow
indicates that
the action
node receives
the input
string inputTit

.le

Now you will
draw the
other object
flow from the
action node G

 to the et Title
output activity
parameter
node outputTi

.tle

Select the Obj
 icon ect Flow

from the
diagram
toolbar. Move
the mouse
cursor over
the action
node Get Title
and click it
when the blue
activation
frame
appears.

Move the
cursor over
the output
activity
parameter
node outputTi

 and click it tle
as soon as
the blue
activation
frame
appears.

Drawing the
object flow in
this direction
indicates that
the action
creates the
output string o

.utputTitle Th
e object is
passed to the
caller of the
activity
diagram,
which is the
assigned port
type operation.

The action currently does nothing. In the next step, you will add action script to the action in Get Title
order to implement some behavior.

Save the UML model.

Using E2E Action Language
For implementing behavior in actions, the Bridge provides the E2E Action Language (EAL), which
implements parts of the Action Semantics UML Extensions. This language is used in a script like fashion
in the action script part of the actions. The E2E Action Script Editor supports the E2E Action Language
and helps you to quickly create syntactical correct action script statements.
Remember that the Web service will take a string as input and pass the output back to the client. In the
next step, the action will "learn" how to transform the input string to upper case and how to Get Title
assign it to the output object by using action script.

Click the action node with the right mouse button, and select the menu item Get Title E2E Action Script
 in the context menu.Editor

If the action node is already selected, you can also press the Ctrl - keys to open the editor. Enter
 .The functions and short cuts of the editor are described in more detail in the Builder User's Guide

https://doc.scheer-pas.com/display/BRIDGE/ASE

The E2E
Action Script

 dialog Editor
opens.

Operations,
functions, and
macros of the
action
language are
displayed in bl

To create ue .
the action
script
statement,
start by typing
the assig set
nment
statement.
After adding a
space, all
objects that
are available
for the action
node will be
listed.

Click the entry
for the object

 in outputTitle
order to select
it.
Alternatively,
use the arrow
keys to mark
it and press
the key Enter
to select it.

The
Action
Languag
e is case
sensitive
. Every
statement
must end
with a se

.micolon

After selecting
the output
object, a
space and an
equal sign (=)
are added
automatically
to the
statement.
Press the End
key to jump to
the end of the
line and press

 Ctrl - Space
to open the
suggestion list

 again. Select
the object inp

 by utTitle
clicking it or
pressing the E

 key.nter

All letters of
the input
string need to
be converted
to upper case.
This will be
done by using
the toUpper()
operation of
the base
class . String
As the object i

 is of nputTitle
type , String
the Action
Script Editor
will provide all
possible
operations.

Type ".". The
suggestion list
containing all
attributes and
valid
operations for
object inputTit

 will appear.le
Type "t" to
filter the
suggestion list
and select
method toUpp

 using er()
the arrow
keys and the E

 key. This nter
operation
requires no
parameters.

The Action Script Editor only suggests objects that are connected to the action node through object
flows. Therefore, it is recommended to complete the object flow before editing the action script.

All possible operations of the E2E base types (, , , , , , String Integer Float DateTime Boolean Blob Ar
, and) are described in theray Any . xUML Services Reference Guide

https://doc.scheer-pas.com/display/BRIDGE/EAL

Every action
script
statement
needs to be
ended with a
semicolon ().;
The
statement for
assigning the
value of the
converted
input object to
the output
object is
completed.

Add a
semicolon
and click the OK
button or
press Ctrl - En

 to save ter
the action
script and
close the
editor.

The
Action
Script
Editor
displays
operation
s in italic.

Suggesti
on lists
or
warnings
that pop
up in the
Action
Script
Editor
can be
closed
by
pressing
the Esc
key.

Often, it is helpful to describe what the statements will do. You can comment one or more lines for this
purpose. Each comment line in the action script is preceded by two slashes ().//

If you double-
click the
action node G

, the et Title
action's
specification
dialog will
open. The
action script
statement you
just entered in
the Action
Script Editor
is shown in
the Script
field. You
could also
enter or
modify the
action script
here.
However, no
help is
provided to
create
syntactical
correct action
script
statements.
Furthermore,
no suggestion
lists are
displayed,
which help
you to enter
action script
quickly.

Save the UML model.

Creating Notes

The action script is now shown in the tagged value of the action node . The script Get Title
stereotype <<ActionScript>> was applied to the action node as well. In E2E Builder, all tagged

 values are assigned to stereotypes. The tagged value belongs to the stereotypescript <<ActionScri
 pt>> .

Often it is necessary to annotate the activity diagram with notes in order to document the control flow,
describe the activities, or enter other useful information.
The note can be used for text based documentation. You can also apply HTML formatting to the text you
entered.

Select the icon from the diagram toolbar and place it somewhere in the activity diagram.Note

The note is already in editing mode. If not, switch to editing mode by clicking into the note:

An HTML toolbar floating above the note is activated. You can use it to format text or create hyperlinks to
other diagrams in the UML model.

Write a descriptive text into the field, e.g. This activity uses an action to traverse an input string to
 an output string, converting it to upper case. Press Ctrl - or click outside the note to leave the Enter

 editing mode. If is switched on, you can switch off the autosize feature in the context menu of Autosize
the note, if you want to resize it manually (you may need to expand the context menu to see all menu

 items). Use the shape handles to resize the note, then.

By using anchors, you can attach the note to any UML element in the activity diagram. Select the Anchor

 icon from the smart manipulation toolbar of the note. You can use this icon for any UML element in
 the activity diagram. Move the anchor over the UML element you want to attach the note to. When the

blue activation frame appears, click to connect the anchor to the UML element.

The note is now connected to the action node with a connecting line (anchor).

As shown on the left, the tagged value is displayed script
in the lower compartment of the note.

You can stop
showing
tagged values
in the note by
deselecting
the option Tag

 in ged Values
its context
menu which
opens when
clicking at the

 button on
top of the
note at left.

If you edit the action script statement with the Action Script Editor, the script in note will be updated
automatically. You could also edit this tagged value directly within the note.

Save the UML model.

	Activities Lesson 1 MD18

