Developing Custom Forms in a Library

You can develop custom Pro-Code forms in a PAS Form Library to use these forms as Low-Code forms

or sub-forms in the Designer. Either you can start from scratch, or you can export the form definitions of a On this Page:
Designer service (see Modeling Forms) as a Pro-Code PAS Form Library. The library already contains

the necessary structure and meta-information to directly start coding.

® Prerequisites

The xUML Library Development Kit (xI i b) helps you with this task. It can be used to build these * Working with the xUML
libraries, and run them for testing purposes. Library Development Kit
(xlib)
.. © Creating

Prerequisites Warkspace and

O Creating a Form
@ D o Building the
eveloping custom form libraries for the Scheer PAS platform assumes a basic knowledge of Library

HTML, CSS, JavaScript/TypeScript and the Angular framework.

. .)
If you want to install the PAS xUML Library Development Kit, please contact our Support team. Testing and Developing

Your Form Component
O Test Application

You need to have the following installed: o g(ta;rttlijr:ge;ihe Test
* NodeJS Application
* the Angular CLI (version 13.1.1) * Using External Libraries

¢ the PAS xUML Library Development Kit

@ Expert Advice Related Pages:
For detailed information about multi-project workspaces, visit the Angular documentation.

® Modeling Forms

Working with the XUML Library Development Kit

H Related Documentation:
(xlib)

After you have installed the @pas/xuml-library-devkit, you can switch to your project folder and execute

. "
the following commands to build a new multiple-projects workspace with a new library project in it. test-libs.tar.gz

Download the archived (empty) test
project if you want to use it as a
starting point for a new Pro-Code
project.

Creating Workspace and Library

® The project has been

The following table displays an overview on the main features of x| i b to use with developing your own created by an xlib new com
form libraries. mand.
® Just perform an npm
Command Description Example install to in_stall the
dependencies.
xlib new This command builds a new multiple-projects workspace with a new xl'ib

<library- library project in it. The development kit automatically generates a test new ny-
nane> form and application. lib

https://doc.scheer-pas.com/display/DESIGNER/Modeling+Forms
https://nodejs.org/en/
https://angular.io/cli
https://doc.scheer-pas.com/display/DESIGNER/Modeling+Forms
https://doc.scheer-pas.com/download/attachments/277743091/test-libs.tar.gz?version=1&modificationDate=1676378207000&api=v2
mailto:support@scheer-pas.com
https://angular.io/guide/file-structure#multiple-projects

You will get the multiple-projects workspace <library-name> containing
the following files:

Generated workspace files

/cl/Projects/Devkit/nmy-l1ib (dev)

$1s -la
drwxr-xr-x 1 ul00106 1049089 0 Aug 9 14:46 ./
drwxr-xr-x 1 ul00106 1049089 0 Aug 9 14:44 ..

/
-rwr--r-- 1 ul00106 1049089 274 Aug 9 14:44 .
editorconfig

drwxr-xr-x 1 ul00106 1049089 0 Aug 9 14:44 .
git/

-rwr--r-- 1 ul00106 1049089 620 Aug 9 14:44 .
gitignore

drwxr-xr-x 1 ul00106 1049089 0 Aug 9 14:44 .
vscode/

-rwWr--r-- 1 ul00106 1049089 1139 Aug 9 14:45
angul ar . j son

drwxr-xr-x 1 ul00106 1049089 0 Aug 9 14:46
node_nodul es/

-rwr--r-- 1 ul00106 1049089 1285 Aug 9 14:46
package. j son

-rwr--r-- 1 ul00106 1049089 843158 Aug 9 14:46
package- | ock. j son

drwxr-xr-x 1 ul00106 1049089 0 Aug 9 14:45
proj ects/
-rwr--r-- 1 ul00106 1049089 1051 Aug 9 14:44
README. md

-rwr--r-- 1 ul00106 1049089 963 Aug 9 14:45
tsconfig.json

The library project is generated at path <library-name/projects/library-
name>.

Projects Folder

/cl/ Projects/Devkit/my-1ib/projects (dev)

$1s -la

drwxr-xr-x 1 ul00106 1049089 0 Aug 9 14:45 ./
drwxr-xr-x 1 ul00106 1049089 O Aug 9 14:46 ../
drwxr-xr-x 1 ul00106 1049089 O Aug 9 14:45 ny-1lib/

Creating a Form

Your workspace project is created with an automatically generated PAS form from the @as/ xumn -

i brary-devkit underthe name my-form. To create your own form, switch to <library-name>
Iprojects/<library-name>/src/lib> in your workspace project. You can now use the @pas/xuml-library-
devkit to create a new PAS form using the following command:

Command Description Example

xlib generate The Development Kit creates a new folder that contains | xli b
form <form name> | all the files needed for a new PAS form. generate
form MyForm

Projects Folder

/ Cl Proj ects/ Devkit/my-1ib/projects/my-
l'ib/src/lib/ny-form (dev)

$1s -la

drwxr-xr-x 1 ul00106 1049089 0 Aug
9 15:15 ./

drwxr-xr-x 1 ul00106 1049089 0 Aug
9 15:15 ../

-rwr--r-- 1 ul00106 1049089 0 Aug
9 15: 15 ny-form conponent. css
-rwr--r-- 1 ul00106 1049089 270 Aug
9 15: 15 ny-form conponent. ht ni
-rwr--r-- 1 ul00106 1049089 627 Aug
9 15: 15 ny-form conponent. spec.ts
-rwWr--r-- 1 ul00106 1049089 767 Aug
9 15:15 ny-form conponent.ts
-rwr--r-- 1 ul00106 1049089 57 Aug
9 15:15 ny-forminterface.ts

Use the @PasForm decorator in the my-form.component.ts file to set the name of the form in your
Designer project and to define the events that can be used to trigger an execution in the BPMN process.

@PASForm Decorator

@asFor nm({
name: ' MyForm ,
events: [
"submit'
I
b

The Development Kit uses the my-form.interface.ts file to build the PAS Designer types for you, so use
this file to define the types for this form.

1 Do not forget to export the form component class in the library interface file (public-api.ts) to
make this new component accessible.

/*

* Public APl Surface of ny-lib

*/

export * from'./lib/ny-lib.service';
export * from'./lib/ny-1ib.conponent';

export * from'./lib/nmy-1ib.nodule';
export * from"'./lib/my-form ny-form conponent';

Building the Library

Make sure you generate the build folder before you build the library for the first time.

Command Description

ng build Generates the build folder.

1 You need to run this command once, before you can build the library for the
first time.

xlib Creates an xlib folder and builds the <library-name>-library.xlib package in the root
build folder.

Go to Administrating Libraries for detailed information on how to upload
libraries. The usage of libraries is explained in detail on page Adding
Libraries.

Testing and Developing Your Form Component

For testing purposes, your multiple-projects workspace comes with an automatically generated test application along with one Angular component.

@ Expert Advice

For detailed information about multi-project workspaces, visit the Angular documentation.

Test Application Features

All mentioned files reside in folder <name of the library>/projects/<name of the application>/src/app.

File Description
form-test- Contains the <pas-child-form> element. This element is part of the @pas/app-core module and is also used by the
wrapper. Designer to show subform elements. With this element, you can test your Designer integration as close as possible.

component.html
The <pas-child-form> element is preadjusted to use events in order to read the form's data. To test that, add text to the input

field, open your browser console and click the submit button (see Starting the Test Application below).

form-test-wrapper.component.html

<pas-child-form[fornm="form (fornEvent)="onFornEvent($event)" [fornG oup] ="
reacti veForni' [data]="fornData"></pas-child-forn>

https://doc.scheer-pas.com/display/DESIGNER/Administrating+Libraries
https://doc.scheer-pas.com/display/DESIGNER/Adding+Libraries
https://doc.scheer-pas.com/display/DESIGNER/Adding+Libraries
https://angular.io/guide/file-structure#multiple-projects

form-test- Contains an import of your form component from your library's public-api.ts file and a form variable which allows you to use
wrapper. your component MyFormComponent in the <pas-child-form> element.
component.ts

form-test-wrapper.component.ts

import { Component, Input, Onlnit, Type } from' @ngul ar/core';

i nport {Abstract For mConponent, FornEvent} from " @as/app-core”;
import { FornGroup } from' @ngular/forns';

import {MyFornmConponent} from"../../../../ny-1ib/src/public-api";

@Component ({
sel ector: 'app-formtest-wapper',
tenplateUrl: './formtest-wapper.conponent.htm',
styleUls: ['./formtest-w apper.conponent.scss']
)

export class FornTest Wapper Conponent inplenents Onlnit {
public form Type<AbstractFornmConponent> = MyFor nConponent;
constructor() { }

ngOnlnit(): void {
}

@nput () public reactiveForm FornmGoup = new FornGoup({});
public fornData: any = {};

async onFornEvent (event: FornEvent) {
consol e. | og(this.reactiveForm val ue);
}
}

app.module.ts Contains an import of @pas/app-core module which makes the <pas-child-form> element accessible.

app.module.ts

import { NgMbdule } from' @ngul ar/core';
import { BrowserMdule } from' @ngul ar/pl atform browser';

inmport { AppRoutingMbdule } from'./app-routing.nodule';

inmport { AppConponent } from'./app.conponent';

inmport { Fornilest Wapper Conponent } from'./formtest-wapper/formtest-wapper.
conponent ' ;

i nport {AppCoreMbdul e} from " @as/ app-core";

@gModul e({

decl arations: [
AppConponent ,
For nTest W apper Conponent
1.
imports: [
Br owser Modul e,
AppRout i nghbdul e,
AppCor eModul e,
I,
providers: [],
boot strap: [AppConponent]
9]
export class AppMwdule { }

app.component.
html

app.component.html

<app-formtest-w apper ></ app-f ormtest-w apper >

Contains the selector of your form-test.wrapper.component to make your component appear.

@ You can find how your HTML element is called in the .ts file of your generated form-test-wrapper component. It is

the selector entry in the @Component decorator.

@onponent ({
sel ector: 'app-formtest-wapper' ,
tenmplateUrl: './formtest-w apper.conponent.htnl' ,
styleUrls: ['./formtest-w apper.conponent.scss']
b

Starting the Test Application

To start your test application, use:

ng serve nmy-formtest --configuration devel opment

This outputs

** Angul ar

* *

MyForm

Some text: |
 Submit |

Li ve Devel opnent Server is |istening on |ocal host: 4200, open your

MyForm
Some text: |Hello MyForm
_ Submit |

e O Inspektor Konsole [Debugger {3 Stilbearbeitung (] Laufzeitanalyse { Speicher

Quellen

N Netzwerkanalyse

Struktur
L7 TOrM-TEST-Wrapper.componel

form-test-wrapper.componey

app-routing.module.ts b))

12 export class FormTestWrapperComponent implements onInit {

13 public form: ents> omponent;
app.component.ts 14 @Input() public veForm: Fo
15 public f Data: any = {};
16 constructor() {

[@ B8 form-test-wrapper.componentts X Jb injectjs

(4 app.component.html

app.modulets
¥ [environments
main.ts
polyfills.ts .
[styles.sess 21
¥ [my-lib/sre -
¥ [webpack

ngonInit(): voi

m

= Object { someTextField
someTextField:

8

browser on http://I ocal host: 4200/

Open the mentioned URL http://localhost:4200/ in
your browser and you will see the following screen:

Enter some text in the input field in your form.

Open the developer console of your browser and click
Submit. The entered text will be displayed in the
console.

Now you can continue extending your form with
individual elements and test them in the Designer.

Using External Libraries

If you want to use external libraries in your Pro-Code forms, you need to add the external library to your own library project.

Path Step Description Example Code

my-lib/projects 1 Go to my-lib/projects/my-lib and execute the install command for the external library.

/my-lib npminstall ng2-pdfjs-

Vi ewer --save

2 Adjust the ng-package.json in the library folder to make the external library available

for your applications. "al | ownedNonPeer Dependenci es

"
"@as/ xunm -1ibrary-
devkit",
"ng2- pdf -vi ewer"]

	Developing Custom Forms in a Library

