
Developing Custom Forms in a Library
You can develop custom Pro-Code forms in a PAS Form Library to use these forms as Low-Code forms
or sub-forms in the Designer. Either you can start from scratch, or you can export the form definitions of a
Designer service (see) as a Pro-Code PAS Form Library. The library already contains Modeling Forms
the necessary structure and meta-information to directly start coding.

The xUML Library Development Kit () helps you with this task. It can be used to build these xlib
libraries, and run them for testing purposes.

Prerequisites

You need to have the following installed:

NodeJS
the (version 13.1.1)Angular CLI
the PAS xUML Library Development Kit

Working with the xUML Library Development Kit
(xlib)
After you have installed the , you can switch to your project folder and execute @pas/xuml-library-devkit
the following commands to build a new multiple-projects workspace with a new library project in it.

Creating Workspace and Library

The following table displays an overview on the main features of to use with developing your own xlib
form libraries.

Command Description Example

xlib new
<library-
name>

This command builds a new multiple-projects workspace with a new
library project in it. The development kit automatically generates a test
form and application.

xlib
new my-
lib

On this Page:

Prerequisites
Working with the xUML
Library Development Kit
(xlib)

Creating
Workspace and
Library
Creating a Form
Building the
Library

Testing and Developing
Your Form Component

Test Application
Features
Starting the Test
Application

Using External Libraries

Related Pages:

Modeling Forms

Related Documentation:

test-libs.tar.gz

Download the archived (empty) test
project if you want to use it as a
starting point for a new Pro-Code
project.

The project has been
created by an comxlib new
mand.
Just perform an npm

to install the install
dependencies.

Developing custom form libraries for the platform assumes a basic knowledge of Scheer PAS
, , / and the framework.HTML CSS JavaScript TypeScript Angular

If you want to install the PAS xUML Library Development Kit, please contact our .Support team

Expert Advice

For detailed information about multi-project workspaces, visit the .Angular documentation

https://doc.scheer-pas.com/display/DESIGNER/Modeling+Forms
https://nodejs.org/en/
https://angular.io/cli
https://doc.scheer-pas.com/display/DESIGNER/Modeling+Forms
https://doc.scheer-pas.com/download/attachments/277743091/test-libs.tar.gz?version=1&modificationDate=1676378207000&api=v2
mailto:support@scheer-pas.com
https://angular.io/guide/file-structure#multiple-projects

You will get the multiple-projects workspace <library-name> containing
the following files:

Generated workspace files

/c/Projects/Devkit/my-lib (dev)
$ ls -la
drwxr-xr-x 1 u100106 1049089 0 Aug 9 14:46 ./
drwxr-xr-x 1 u100106 1049089 0 Aug 9 14:44 ..
/
-rw-r--r-- 1 u100106 1049089 274 Aug 9 14:44 .
editorconfig
drwxr-xr-x 1 u100106 1049089 0 Aug 9 14:44 .
git/
-rw-r--r-- 1 u100106 1049089 620 Aug 9 14:44 .
gitignore
drwxr-xr-x 1 u100106 1049089 0 Aug 9 14:44 .
vscode/
-rw-r--r-- 1 u100106 1049089 1139 Aug 9 14:45
angular.json
drwxr-xr-x 1 u100106 1049089 0 Aug 9 14:46
node_modules/
-rw-r--r-- 1 u100106 1049089 1285 Aug 9 14:46
package.json
-rw-r--r-- 1 u100106 1049089 843158 Aug 9 14:46
package-lock.json
drwxr-xr-x 1 u100106 1049089 0 Aug 9 14:45
projects/
-rw-r--r-- 1 u100106 1049089 1051 Aug 9 14:44
README.md
-rw-r--r-- 1 u100106 1049089 963 Aug 9 14:45
tsconfig.json

The library project is generated at path <library-name/projects/library-
.name>

Projects Folder

/c/Projects/Devkit/my-lib/projects (dev)
$ ls -la
drwxr-xr-x 1 u100106 1049089 0 Aug 9 14:45 ./
drwxr-xr-x 1 u100106 1049089 0 Aug 9 14:46 ../
drwxr-xr-x 1 u100106 1049089 0 Aug 9 14:45 my-lib/

Creating a Form

Your workspace project is created with an automatically generated PAS form from the @pas/xuml-
under the name . To create your own form, switch to library-devkit my-form <library-name>

 in your workspace project. You can now use the @pas/xuml-library-/projects/<library-name>/src/lib>
devkit to create a new PAS form using the following command:

Command Description Example

xlib generate
form <form-name>

The Development Kit creates a new folder that contains
all the files needed for a new PAS form.

Projects Folder

/C/Projects/Devkit/my-lib/projects/my-
lib/src/lib/my-form (dev)
$ ls -la
drwxr-xr-x 1 u100106 1049089 0 Aug
9 15:15 ./
drwxr-xr-x 1 u100106 1049089 0 Aug
9 15:15 ../
-rw-r--r-- 1 u100106 1049089 0 Aug
9 15:15 my-form.component.css
-rw-r--r-- 1 u100106 1049089 270 Aug
9 15:15 my-form.component.html
-rw-r--r-- 1 u100106 1049089 627 Aug
9 15:15 my-form.component.spec.ts
-rw-r--r-- 1 u100106 1049089 767 Aug
9 15:15 my-form.component.ts
-rw-r--r-- 1 u100106 1049089 57 Aug
9 15:15 my-form.interface.ts

xlib
generate
form MyForm

Use the @PasForm decorator in the file to set the name of the form in your my-form.component.ts
Designer project and to define the events that can be used to trigger an execution in the BPMN process.

@PASForm Decorator

@PasForm({
 name: 'MyForm',
 events: [
 'submit'
]
})

The Development Kit uses the file to build the PAS Designer types for you, so use my-form.interface.ts
this file to define the types for this form.

Building the Library

Make sure you generate the build folder before you build the library for the first time.

Command Description

Do not forget to export the form component class in the library interface file to (public-api.ts)
make this new component accessible.

/*
 * Public API Surface of my-lib
 */

export * from './lib/my-lib.service';
export * from './lib/my-lib.component';
export * from './lib/my-lib.module';
export * from './lib/my-form/my-form.component';

ng build Generates the folder.build

xlib
build

Creates an folder and builds the package in the root xlib <library-name>-library.xlib
folder.

Testing and Developing Your Form Component
For testing purposes, your multiple-projects workspace comes with an automatically generated test application along with one Angular component.

Test Application Features

All mentioned files reside in folder .<name of the library>/projects/<name of the application>/src/app

File Description

form-test-
wrapper.
component.html

Contains the element. This element is part of the module and is also used by the <pas-child-form> @pas/app-core
Designer to show subform elements. With this element, you can test your Designer integration as close as possible.

The element is preadjusted to use events in order to read the form's data. To test that, add text to the input <pas-child-form>
field, open your browser console and click the submit button (see below).Starting the Test Application

form-test-wrapper.component.html

<pas-child-form [form]="form" (formEvent)="onFormEvent($event)" [formGroup]="
reactiveForm" [data]="formData"></pas-child-form>

You need to run this command once, before you can build the library for the
first time.

Go to for detailed information on how to upload Administrating Libraries
libraries. The usage of libraries is explained in detail on page Adding

.Libraries

Expert Advice

For detailed information about multi-project workspaces, visit the .Angular documentation

https://doc.scheer-pas.com/display/DESIGNER/Administrating+Libraries
https://doc.scheer-pas.com/display/DESIGNER/Adding+Libraries
https://doc.scheer-pas.com/display/DESIGNER/Adding+Libraries
https://angular.io/guide/file-structure#multiple-projects

form-test-
wrapper.
component.ts

Contains an import of your form component from your library's file and a form variable which allows you to use public-api.ts
your component in the element.MyFormComponent <pas-child-form>

form-test-wrapper.component.ts

import { Component, Input, OnInit, Type } from '@angular/core';
import {AbstractFormComponent, FormEvent} from "@pas/app-core";
import { FormGroup } from '@angular/forms';
import {MyFormComponent} from "../../../../my-lib/src/public-api";

@Component({
 selector: 'app-form-test-wrapper',
 templateUrl: './form-test-wrapper.component.html',
 styleUrls: ['./form-test-wrapper.component.scss']
})
export class FormTestWrapperComponent implements OnInit {
 public form: Type<AbstractFormComponent> = MyFormComponent;
 constructor() { }

 ngOnInit(): void {
 }

 @Input() public reactiveForm: FormGroup = new FormGroup({});
 public formData: any = {};

 async onFormEvent(event: FormEvent) {
 console.log(this.reactiveForm.value);
 }
}

app.module.ts Contains an import of which makes the element accessible.@pas/app-core module <pas-child-form>

app.module.ts

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppRoutingModule } from './app-routing.module';
import { AppComponent } from './app.component';
import { FormTestWrapperComponent } from './form-test-wrapper/form-test-wrapper.
component';
import {AppCoreModule} from "@pas/app-core";

@NgModule({
 declarations: [
 AppComponent,
 FormTestWrapperComponent
],
 imports: [
 BrowserModule,
 AppRoutingModule,
 AppCoreModule,
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

app.component.
html

Contains the selector of your to make your component appear.form-test.wrapper.component

app.component.html

<app-form-test-wrapper></app-form-test-wrapper>

Starting the Test Application

To start your test application, use:

ng serve my-form-test --configuration development

This outputs

** Angular Live Development Server is listening on localhost:4200, open your browser on http://localhost:4200/
**

Open the mentioned URL in http://localhost:4200/
your browser and you will see the following screen:

Enter some text in the input field in your form.

Open the developer console of your browser and click
. The entered text will be displayed in the Submit

console.

Now you can continue extending your form with
individual elements and test them in the Designer.

You can find how your HTML element is called in the .ts file of your generated component. It is form-test-wrapper
the entry in the decorator.selector @Component

@Component({
 selector: 'app-form-test-wrapper' ,

 templateUrl: './form-test-wrapper.component.html' ,
 styleUrls: ['./form-test-wrapper.component.scss']

})

Using External Libraries
If you want to use external libraries in your Pro-Code forms, you need to add the external library to your own library project.

Path Step Description Example Code

my-lib/projects
/my-lib

1 Go to and execute the install command for the external library.my-lib/projects/my-lib
npm install ng2-pdfjs-
viewer --save

2 Adjust the in the library folder to make the external library available ng-package.json
for your applications. "allowedNonPeerDependencies

":[
 "@pas/xuml-library-
devkit",
 "ng2-pdf-viewer"]

	Developing Custom Forms in a Library

