
1.  

2.  

3.  

1.  

2.  

Error Handling of Root State Machine
The generated root state machine of Designer service comes with an integrated error handling.

Executable processes work with the concept of . Transactions are equivalent to units of transactions
work, that are committed at the end of the session. In case an error occurs during a transaction, the 
following happens:

The error is caught.
When an exception occurs and is not explicitly caught in the execution diagram by the modeler, 
the current implementation (and persistent state transaction) skips to its end. All subsequent 
code is skipped. Then, the error is caught by the persistent state engine.
The error handler is invoked.
The error handler sends an error signal ( ) to the root state machine.handleErrorSignal
The process switches into the error state at transaction end.
The persistent state engine commits the transaction - and also the error signal. The process 
switches to the next process step but then goes to the error state.

The process instance is displayed as erroneous. You can now

Rectify the error and send a retry signal
You can now look into the error and apply fixes if necessary. The last process step the process 
has reached is marked by a history state, so it is possible to trigger a retry from this very step. 
You can either trigger a manual retry, or the process could have auto retry enabled and 
automatically performs retries in given intervals.
Abort the process instance 
Alternatively, you can abort the process instance by sending an abort signal. In this case, the 
process instance will be terminated as aborted (not done).

Behavior of the State Machine
The behavior of the process is implemented to a sub state machine ( in the state machine MyProcess 
diagram above). Depending on the BPMN Element you have added your execution implementation to, 
this process state machine shows a different behavior.

Error 
In

State Machine Element BPMN 
Element

Behavior on Error

On Event Transition from state  to start event of sub state machineInitialized
Start 
Event
Mess
age 
Start 
Event
Timer
Start 
Event

The process state engine goes to next 
process step.
The process state engine goes to the error 
state.

On this Page:

Behavior of the State 
Machine
Behavior on Retry

Persisted 
Variables

Example
Order of 
Execution in 
Execution Diagram
Backend 
Processing

Related Pages:

xUML Service State 
Machines

Related Documentation:

Trigger a Retry
Persistent States 
of Containerized 
xUML Services
Stalled Persistent 
State Objects

All errors that occur on process execution are caught.

All subsequent code after the 
exception is skipped.

https://doc.scheer-pas.com/display/DESIGNER/xUML+Service+State+Machines
https://doc.scheer-pas.com/display/DESIGNER/xUML+Service+State+Machines
https://doc.scheer-pas.com/display/ADMIN/Persistent+States+of+Containerized+xUML+Services#PersistentStatesofContainerizedxUMLServices-SendingSignalstoPersistentStateObjects
https://doc.scheer-pas.com/display/ADMIN/Persistent+States+of+Containerized+xUML+Services#PersistentStatesofContainerizedxUMLServices-SendingSignalstoPersistentStateObjects
https://doc.scheer-pas.com/display/ADMIN/Persistent+States+of+Containerized+xUML+Services#PersistentStatesofContainerizedxUMLServices-SendingSignalstoPersistentStateObjects
https://doc.scheer-pas.com/display/BRIDGE/Stalled+Persistent+State+Objects#StalledPersistentStateObjects-TriggeringaRetry
https://doc.scheer-pas.com/display/BRIDGE/Stalled+Persistent+State+Objects#StalledPersistentStateObjects-TriggeringaRetry


Transition from previous state to current state
Plain 
Event
Mess
age 
Event
Timer
Event
End 
Event
Recei
ve 
Task
User 
Task

On Exit Entry of Executed <name of 
service task>

Service 
Task

Get Data User Task
Implementations in the  execution Get Data
do not have any effect on the persistent state 
engine (no error state).
On error, the form loads nevertheless but the 
form will not be initialized in any way.

Decision Guard expression on state 
transition <name of the decision 
flow>

Exclusive 
Gateway The process instance does  go to error not 

state.
The process is rolled back to the previous 
state.
A log message is logged to the service log:
Allowing guard functions to 
throw exceptions is considered a 
very bad practise, so, even 
though error handler will be 
executed, transaction will be 
rolled back. You probably should 
rethink your design.

Behavior on Retry
In case of error, when the process is in error state, you can trigger a retry of the process execution. Refer 
to  (PAS Administration) or Persistent States of Containerized xUML Services Stalled Persistent State 

 (Integration) for more details on how to do this.Objects

When implementing you process, you should pay attention to the particularities listed below to allow for a 
smooth retry behavior.

Persisted Variables

A retry resumes the process starting with the behavior the error has occurred in. All persisted variables of 
the process are saved to the error state, and the retry will be performed with the saved values.

Please also consider the hint regarding persisted variables at  Order of Execution in Execution Diagram
below.

Example

Processed data items are saved to a persisted array . As the process switches into error state, anArray
all values within are saved. On retry, the processing of data items is restarted from the  anArray
beginning. If you do not initialize the array properly, you may end-up with duplicate array elements when 
data items are processed for the second time. In this case, it would be advised to initialize the array like e.
g. .set anArray = NULL

Order of Execution in Execution Diagram

Either set the persisted variables to valid starting values at the beginning of each 
behavior to avoid data corruption
or keep track of the processing to be able to not start from the beginning but from the 
exact point where the error occurred.

https://doc.scheer-pas.com/display/ADMIN/Persistent+States+of+Containerized+xUML+Services#PersistentStatesofContainerizedxUMLServices-SendingSignalstoPersistentStateObjects
https://doc.scheer-pas.com/display/BRIDGE/Stalled+Persistent+State+Objects#StalledPersistentStateObjects-TriggeringaRetry
https://doc.scheer-pas.com/display/BRIDGE/Stalled+Persistent+State+Objects#StalledPersistentStateObjects-TriggeringaRetry


1.  

2.  

3.  

In this context, the order of execution in the execution diagram is important. The implementations in the 
execution diagram are executed in the following order:

Persisted to Local 
At first, all object flows from persisted variables to local variables are executed.
Operation Calls 
Next, all operation calls are performed in the defined order - including assigning the respective 
output values to local and persisted variables.
Local to Persisted 
Finally, all object flows from local to persisted variables are executed.

Backend Processing

The same behavior as explained for persisted variables (see above) also applies to backend processing: 
If your backend does not support transaction handling, you should keep track of your processing to avoid 
duplicated processing in case of retry. This e.g. may concern file uploads or API calls.

Regarding the retry hints concerning  above, please note that persisted Persisted Variables
variables are updated

from operation calls directly after that call
from local variables at the very end of the execution

For non-transactional backend processing, keep track of the processing to be able to retry the 
process from the exact point where the error occurred. You can save this data to persisted 
variables as these are saved to the error state and are available on retry.


	Error Handling of Root State Machine

