
Simple Mapping of Attributes

The following figure shows a very simple case of mapping a class to another.

Defining the Mapping
The most trivial mapping is done by just drawing a dependency between two attributes. For example, last

 is identical in class and .Name Input1 Output1

Although this situation is common, quite frequently we have the requirement that an attribute must be
converted while being mapped. For instance, when is being mapped to with a different data type. id ID
Or when is being mapped to we prefix the string with .street fullAddress2 'My Street: '
This can be achieved by using the tagged value on the mappingRule <<E2ESimpleMapping>>
stereotype. This tagged value may contain any valid action script statement. To refer the source or target
attribute within the mapping rule, use the keyword source and target.

In many cases it makes no sense to apply an operation to optional input values if they are NULL.
Therefore, if an operation has input parameters only that are optional at the source class, the operation is
applied only, if at least one of the input values is not NULL. This is technically implemented by generating
an implicit guard. This behavior can be overridden by setting the tagged value callOnlyIfParametersExist
on the stereotype to false (default is true).<<E2ESimpleMapping>>

Caveat

Per default, is true, so defined are only applied to existing callOnlyIfParametersExist mapping rules
parameters. The compiler will generate guard statements to variables used in the action script in this all
case.

You need to be aware of this behavior when writing your mapping script. If you use nested if clauses that
check for the existence of source parameters like e.g.

set target.field =
 if source.fieldA.exists() and
 source.fieldA.normalizeSpaces().stringLength() > 0
 then source.fieldA.normalizeSpaces()
 else if source.fieldB.exists() and
 source.fieldB.normalizeSpaces().stringLength() > 0
 then source.fieldB.normalizeSpaces()
[...]

this will result in the mapping only being performed if source fields are set. Also, guard statements will all
be applied to local variables used the mapping script.

You can override this behavior setting to on the mapping relation. callOnlyIfParametersExist false
Then, no guard statements will be generated but you need to take care for non-existing values by
yourself.

On this Page:

Defining the Mapping
Caveat

Invoking the Mapping

Related Pages:

Simple Mapping of
Attributes
Simple Mapping of Classes
More Complex Mappings
Mapping with a Mapping
Handler
Constraints

Related Documentation:

The Interactive xUML
Debugger

Example File (Builder projectAdvanced Modeling/Mapping):

<your example path>\Advanced Modeling\Mapping\uml\mappingSimple.xml

https://doc.scheer-pas.com/display/BRIDGE/Simple+Mapping+of+Classes
https://doc.scheer-pas.com/display/BRIDGE/More+Complex+Mappings
https://doc.scheer-pas.com/display/BRIDGE/Mapping+with+a+Mapping+Handler
https://doc.scheer-pas.com/display/BRIDGE/Mapping+with+a+Mapping+Handler
https://doc.scheer-pas.com/display/BRIDGE/Constraints
https://doc.scheer-pas.com/display/BRIDGE/Interactive+Debugger
https://doc.scheer-pas.com/display/BRIDGE/Interactive+Debugger
https://doc.scheer-pas.com/download/attachments/2286600/Mapping.zip?version=1&modificationDate=1538480479000&api=v2

Invoking the Mapping
After defining the mapping in class diagrams, the mappings must be invoked in an activity diagram using
a action.<<Mapping>>

This action then will internally translate the declarations defined in class diagrams into activity diagrams.
In our simple example it generates the following set of action script statements that actually execute the
mappings:

create output1;
set output1.ID =convertToString(input1.id);
set output1.lastName = input1.lastName;
set output1.fullAddress =concat(convertToString(input1.zipCode), ' ',
input1.city, ', ', input1.street);
set output1.fullAddress2 =concat('My Street: ', input1.street);
set output1.phones = input1.phoneNumbers;

The allows you to debug all the generated activities.Interactive xUML Debugger

This action and the used mapping definitions must be kept in the same model, otherwise the
compiler will complain.

https://doc.scheer-pas.com/display/BRIDGE/Interactive+Debugger

	Simple Mapping of Attributes

