
Creating Objects of Base and Complex Types
The most basic features of each language are creating instances of classes and setting values.

With the assignment statement, it is possible to create like , set objects of base types String In
, , , and teger Float Boolean DateTime

whereas need to be instantiated (created) first with the objects of complex types create
statement - that is creating an instance of the corresponding class. Once the instance of the
class (the object) has been created, it can store data in its attributes.

Creating Base Types with the set Assignment
Statement
The following examples shows how to use the set assignment statement to create base type objects.

Syntax set anObject = aValue;

Semantics Assigns a value to .anObject

Substitutables anOb
ject

Can be an object node or an attribute, or an association end.

aVal
ue

Can be a literal, a object node of base type, or an action script operation
or expression returning a base type.

Examples set aString = "Hello World!";
set anInteger = 12345;
set currentDate = currentDateTime();

The example in the figure below shows how to create base type objects like strings, integers, etc. Base
type objects need not to be instantiated, they are created by using the assignment statement to set
directly assign a value to the variable.
All variables are drawn as object nodes with all objects being of base type.

Creating Arrays by Appending Items
You can create arrays using the statement (see action script example below):create

create anArray;
append "Hello World!" to anArray;

Most of the time the xUML Runtime will create the array implicitly on appending the first item. There is
one exception to this rule, though: Arrays that contain array elements having a complex type with
multiplicity.

Let's assume you have an array of complex type and this complex type has a property ArrayElement su
 with multiplicity 0..*.bArray

What you can do, if is :subArray NULL

set array1[0].subArray = anotherArray;

The reference is changed to point to .subArray anotherArray
What you can't do, if is subArray NULL:

append "something" to array1[0].subArray;

In this case (get statement on the right side of a statement), the Runtime will throw a get error
for .array1[0].subArray

On this Page:

Creating Base Types with
the set Assignment
Statement
Creating Arrays by
Appending Items
Creating Objects of
Complex Type

Related Pages:

Basics of the Action Script
Language:

Creating Objects of Base
and Complex Types
self Context
Object References
Guarded Statements
Local Variables
NULL Values
Constructors

https://doc.scheer-pas.com/display/DESIGNER/self
https://doc.scheer-pas.com/display/DESIGNER/Object+References
https://doc.scheer-pas.com/display/DESIGNER/Guarded+Statements
https://doc.scheer-pas.com/display/DESIGNER/Local+Variables
https://doc.scheer-pas.com/display/DESIGNER/NULL+Values
https://doc.scheer-pas.com/display/DESIGNER/Constructors

Creating Objects of Complex Type
The following example shows how to use the statement to create objects of complex type.create

Syntax create anObject;

Semantics Creates an object of complex type. The object reference is stored in anObject.
Initial values defined on the class attributes will be set.

Substitutables anObject Can be any valid object name.

Examples create simpleObject;

In the following cases, objects need to be created with the statement:create

You want to explicitly create an instance of a class.
Result objects of an iteration over an action script need to be created.

In the following cases, the statement is not necessary:create

Adapters may create objects of any type. Those objects are implicitly created by the adapter
and do not need to be created explicitly, e.g. the result set of an SQL query.
When having related classes, the instantiation of intermediate objects is not mandatory.
In the example below, has an attribute , which is of type (see association). ClassA b ClassB Cla

 in turn has a string attribute named .ssB aString

When creating an instance of the top-level class , the lower classes are instantiated ClassA
implicitly, so the action script below would be fine.

create objectOfClassA;
set objectOfClassA.b.aString ="Hello World!";

Scalar base type objects are never created using the statement (see create Creating Base
 above).Types with the set Assignment Statement

	Creating Objects of Base and Complex Types

