
HTTP Header Support
The xUML Runtime comes with many adapters (see) that allow you to access a xUML Service Adapters
variety of backends via different interfaces. Request to , and services, and via , REST SOAP HTTP REST

 and adapters use the HTTP protocol. With this protocol, the xUML Runtime serves a set of SOAP URL
standard headers (via) as described below (libcurl Standard HTTP Headers with xUML Service Adapters
). You can overwrite these standard headers using the concept of .HTTP header roles

Also, the Runtime provides interfaces to act as a variety of services. In general, the Runtime supports
HTTP 1.0 for services but some features of HTTP 1.1 are implemented as well (see Standard HTTP

 below).Headers with Service Implementations

Standard HTTP Headers with xUML Service
Adapters
SOAP, REST and URL adapters use to provide HTTP headers.libcurl

Runtime 2019.9 With xUML service adapter calls, the xUML Runtime adds the following outgoing HTTP
headers containing correlation information to the request:

X-Transaction-Id or (in JMS context)xTransactionId
This header identifies the transaction the call belongs to. You can set the transaction id
manually with . If not set, the Runtime will generate one.setTransactionID
This header will be passed through the callstack to identify all service calls that belong to a
transaction.
X-Request-Id
This header identifies the unique request. The Runtime generates a unique number for each
adapter call.
X-Sender-Host and X-Sender-Service
These headers contain the sender host resp. the sender service. They are set by the Runtime
automatically.

Transaction id and request id will be on the adapter call. Having this logged to the transaction log
information, you can use this for error analysis or usage metrics.

For more information on specific adapters refer to .xUML Service Adapters

Standard HTTP Headers with Service
Implementations
In general, the Bridge supports HTTP version 1.0 for xUML services. However, the following features of
HTTP 1.1 are implemented to the xUML Runtime as well:

Expect: 100 Continue
Runtime 2018.5 Transfer-Encoding: chunked

Runtime 2019.9 Bridge xUML services read the following incoming HTTP headers containing
correlation information:

X-Transaction-Id or (in JMS context)xTransactionId
This header identifies the transaction the call belongs to. You can set the transaction id
manually with . If not set, the Runtime will generate one.setTransactionID
This header will be passed through the callstack to identify all service calls that belong
to a transaction.
X-Request-Id
This header should identify the unique request.
X-Sender-Host and X-Sender-Service
These headers should contain the sender host resp. the sender service.

These headers will be all . Having this information, you can use this logged to the transaction log
for error analysis or usage metrics.

For more information on specific service implementations refer to .Service Implementations

Overwriting the Standard HTTP Headers

On this Page:

Standard HTTP Headers
with xUML Service
Adapters
Standard HTTP Headers
with Service
Implementations
Overwriting the Standard
HTTP Headers

Configuring
Incoming Header
Roles on HTTP
Services
Incoming Header
Roles on REST
Services

Related Pages:

E2E Adapters
Service Implementations

HTTP Service
REST Service
SOAP Service

Frontend Components

https://doc.scheer-pas.com/display/BRIDGE/Adapters
https://doc.scheer-pas.com/display/BRIDGE/REST+Service
https://doc.scheer-pas.com/display/BRIDGE/SOAP+Service
https://doc.scheer-pas.com/display/BRIDGE/HTTP+Service
https://doc.scheer-pas.com/display/BRIDGE/REST+Adapter
https://doc.scheer-pas.com/display/BRIDGE/SOAP+Adapter
https://doc.scheer-pas.com/display/BRIDGE/URL+Adapter
https://doc.scheer-pas.com/display/BRIDGE/setTransactionID
https://doc.scheer-pas.com/display/BRIDGE/Contents+of+the+Transaction+Log
https://doc.scheer-pas.com/display/BRIDGE/Adapters
https://doc.scheer-pas.com/display/BRIDGE/setTransactionID
https://doc.scheer-pas.com/display/BRIDGE/Contents+of+the+Transaction+Log
https://doc.scheer-pas.com/display/BRIDGE/Service+Implementations
https://wiki.e2ebridge.com/display/E2EDOC/.E2E+Adapters+v6.0.40
https://doc.scheer-pas.com/display/BRIDGE/Service+Implementations
https://doc.scheer-pas.com/display/BRIDGE/HTTP+Service
https://doc.scheer-pas.com/display/BRIDGE/REST+Service
https://doc.scheer-pas.com/display/BRIDGE/SOAP+Service
https://doc.scheer-pas.com/display/BRIDGE/Frontend+Components

Runtime 2020.12 The standard header handling of the xUML Runtime as described above works well in
homogeneous xUML environments. If you need to access services that are implemented using other
technologies (e.g. in a distributed environment), however, the standard HTTP header handling may not
meet your needs. You may need to e.g. provide correlation IDs in a different header, or overwrite
standard header names.
With the concept of , you can take control of the header handling by defining your HTTP Header Roles
own header roles.

Once header roles are defined, they are changeable as settings on the Bridge (see xUML Service
).Settings

Configuring Incoming Header Roles on HTTP Services

For all services that are accessible via the HTTP protocol (, ,), you can define your HTTP REST SOAP
own pairs of in the component diagram in tagged value <http header name>:<role> httpHeaderRol

on the composite (). can hold a list of definitions in format es <<E2EComposite>> httpHeaderRoles <htt
 (one list entry per line). See for more details on p header name>:<role> Frontend Components

component diagrams.

This can be used to overwrite the default behavior for HTTP services described .above

Available roles are:

Role Description

none Remove the role from a standard header with e.g. .X-Transaction-Id:none

client_host The header identified by <http header name> should be treated as .X-Sender-Host

client_service The header identified by <http header name> should be treated as X-Sender-
.Service

correlation_id The header identified by <http header name> should be treated as .X-Request-Id

transaction_id The header identified by <http header name> should be treated as .X-Transaction-Id

The following rules apply to the usage of header roles:

The default header handling is completely dropped and replaced by your definitions (see
example).2
If you want to use the standard configuration and just exchange one header configuration, you
must reconfigure the other standard headers.
You can assign multiple roles to the same header by listing the header twice in the role
definition (see example).5
If you apply the same role to different headers, the first one (in order of definition) is used (see
example).4

Some examples:

Nr Role Definition
on Service
Composite

Incoming
Headers

Headers
Regarded
by Runtime

Rules Applied

1 X-Sender-
Host
X-Sender-
Service
X-Request-Id
X-
Transaction-
Id

X-Sender-Host
X-Sender-
Service
X-Request-Id
X-Transaction-Id

standard header handling

2 myHeader=client_h
ost

X-Sender-
Host
X-Sender-
Service
X-Request-Id
X-
Transaction-
Id

role definition overwrites standard
handling,
standard headers are disregarded

Once you define header roles, the standard header handling will be completely dropped and
replaced by your configuration.

https://doc.scheer-pas.com/display/BRIDGE/xUML+Service+Settings
https://doc.scheer-pas.com/display/BRIDGE/xUML+Service+Settings
https://doc.scheer-pas.com/display/BRIDGE/HTTP+Service
https://doc.scheer-pas.com/display/BRIDGE/REST+Service
https://doc.scheer-pas.com/display/BRIDGE/SOAP+Service
https://doc.scheer-pas.com/display/BRIDGE/Frontend+Components

myHeader
X-Sender-
Host
X-Sender-
Service
X-Request-Id
X-
Transaction-
Id

myHeader
role definition overwrites standard
handling,
standard headers are disregarded
incoming user-defined header is regarded

3 myHeader=client_h
ost
X-Sender-
Service=client_service

X-Request-
Id=correlation_id
X-Transaction-
Id=transaction_id

X-Sender-
Host
X-Sender-
Service
X-Request-Id
X-
Transaction-
Id

X-Sender-
Service
X-Request-Id
X-Transaction-Id

role definition overwrites standard
handling
only the redefined standard headers are
regarded

myHeader
X-Sender-
Host
X-Sender-
Service
X-Request-Id
X-
Transaction-
Id

myHeader
X-Sender-
Service
X-Request-Id
X-Transaction-Id

role definition overwrites standard
handling
redefined standard headers are regarded
incoming user-defined header is regarded

4 myHeader2=correlati
on_id

=correlatimyHeader1
on_id

myHeader1
myHeader2

myHeader2
myHeader2 takes precedence over myHe

 because it comes first in order of ader1
definition

myHeader1 myHeader1
myHeader1 is regarded because myHea

 has not been providedder2

5 myHeader=correlati
 on_id

myHeader=transacti
on_id

myHeader myHeader
contents of are treated as myHeader
correlation and transaction id

Incoming Header Roles on REST Services

Additionally, header roles of REST services can be overwritten in the definition <<E2ERESTService>>
(same rules as explained).above

Some examples:

Nr Role Definition on
Service Composite

Role Definition on
REST Service

Incoming
Headers

Headers Regarded by
Runtime

1 X-Sender-Host
X-Sender-
Service
X-Request-Id
X-Transaction-
Id

X-Sender-
Host

sender host

X-Sender-
Service

sender
service

X-Request-
Id

request
/correlation id

X-
Transaction
-Id

transaction id

When specifying roles on both, the composite and the REST service, please note that header role
definitions on the REST service () overrule the same role definitions on the <<E2ERESTService>>
composite().<<E2EComposite>>

Known Issues

Example does not behave as documented here. The xUML Runtime will prefer myHeader1 to 3
myHeader2 if both headers are provided. This issue will be fixed with one of the next Runtime
releases.

2 myHeader=client_host myHeader
X-Sender-Host
X-Sender-
Service
X-Request-Id
X-Transaction-
Id

myHeader sender host

3 myHeader1=client_host myHeader2=client_host myHeader1
myHeader2

myHeader2 sender host

myHeader1 myHeader1 sender host

4 myHeader1=client_host
myHeader2=client_service

myHeader2=client_host myHeader1
myHeader2

myHeader2 sender host

5 myHeader1=client_host
myHeader2=client_service

myHeader2=none myHeader1
myHeader2

myHeader1 sender host

6 myHeader1=client_host myHeader2=client_service myHeader1
myHeader2

myHeader2 sender
service

myHeader1 sender host

7 myHeader2=correlation_id
myHeader1=correlation_id

myHeader1
myHeader2

myHeader2 request
/correlation id

8 myHeader2=correlation_id
myHeader1=correlation_id

myHeader1=correlation
_id

myHeader1
myHeader2

myHeader1 request
/correlation id

	HTTP Header Support

