
Concepts of Data Modeling
Processes are based on data that is going in, is processed, and coming out. This data is specified by
data types.
Data types can be structured into packages or interfaces. They are defined by classes and their
properties, and have related operations and their parameters.

Icon Element Description

package A package is like a directory for the file system. It is used to group executable
data model elements. Packages can have any depth of nesting: To structure
your work, you can create packages within packages.
Also, packages define a sort of namespace to the contained elements. The
name of the package is part of the element path, e.g. is Package1.Class
different from .Package2.Class

interface In contrast to a class, an interface has no properties nor implementations.
Interfaces are used to define common operations of multiple classes, and then
derive from that interface.
Operations of interfaces do not have an implementation but only define the
signature (parameters and types).

class A class is an aggregation of properties and operations that describes a complex
data type from which objects can be created.

property Properties are data fields that describe the structure of the class.

operation An operation adds behavior to a class or interface. The behavior describes how
to process the data given by the parameters. In the context of the Designer,
you can implement operations as , or .mapping action script activity

parameter Operations can have parameters that define the input and output objects.
Operation parameters can be of simple type () or of complex type Base Types
(class or interface).

Defining Data Types
To describe the data that is used during a process, you can

use the built-in Base Types
import one or more that contain the necessary data typeslibraries
create your own with the Designerdata model (implementation)

Base Types

The Designer provides six base types: , , , , , in a standard Blob Boolean DateTime Float Integer String
library that is imported as per default into all service models.
All these types derive from the seventh, general type .Any

On this Page:

Defining Data Types
Base Types
Libraries
Implementation

Using Data Types
Execution Diagram
Mapping Diagram
Action Script

Related Pages:

Available Base Types
Custom Complex Types
XML Serialization

Mapping Data Structures

Related Documentation:

PAS Designer User Guide
Modeling Data
Mapping
Modeling
Execution
Adding Variables
Action Script
Language
Persisting Data
Adding Operation
Calls
Sharing Designer
Content

https://doc.scheer-pas.com/display/DESIGNER/Modeling+Data+Mapping
https://doc.scheer-pas.com/display/DESIGNER/Using+Action+Script
https://doc.scheer-pas.com/display/DESIGNER/Modeling+Activities
https://doc.scheer-pas.com/display/DESIGNER/Available+Base+Types
https://doc.scheer-pas.com/display/DESIGNER/Available+Base+Types
https://doc.scheer-pas.com/display/DESIGNER/Custom+Complex+Types
https://doc.scheer-pas.com/display/DESIGNER/XML+Serialization
https://doc.scheer-pas.com/display/DESIGNER/Mapping+Data+Structures
https://doc.scheer-pas.com/display/DESIGNER/PAS+Designer+User+Guide
https://doc.scheer-pas.com/display/DESIGNER/Modeling+Data+Mapping
https://doc.scheer-pas.com/display/DESIGNER/Modeling+Data+Mapping
https://doc.scheer-pas.com/display/DESIGNER/Modeling+Execution
https://doc.scheer-pas.com/display/DESIGNER/Modeling+Execution
https://doc.scheer-pas.com/display/DESIGNER/Adding+Variables
https://doc.scheer-pas.com/display/DESIGNER/Action+Script+Language
https://doc.scheer-pas.com/display/DESIGNER/Action+Script+Language
https://doc.scheer-pas.com/display/DESIGNER/Persisting+Data
https://doc.scheer-pas.com/display/DESIGNER/Adding+Operation+Calls
https://doc.scheer-pas.com/display/DESIGNER/Adding+Operation+Calls
https://doc.scheer-pas.com/display/DESIGNER/Sharing+Designer+Content
https://doc.scheer-pas.com/display/DESIGNER/Sharing+Designer+Content

All built-in
base types
are located in
a dedicated
package Base

 that is Types
provided with
the Designer.
These base
types are only
able to hold
one single
piece of
information,
like text in a St

, true or ring
false in a Bool

, or binary ean
data in a .Blob

You can find
more details
on the base
types and
simple
examples on A
vailable Base

.Types

Libraries

Libraries are code repositories that are useful to organize your development project into re-usable pieces
that can be used in multiple services. They contain predefined classes, interfaces, operations and
parameters you can use during modeling by simple drag & drop.
Libraries are developed with the . The Designer comes with a standard library which already Builder
provides all necessary and base type operations. Base Types

https://doc.scheer-pas.com/display/DESIGNER/Available+Base+Types
https://doc.scheer-pas.com/display/DESIGNER/Available+Base+Types
https://doc.scheer-pas.com/display/DESIGNER/Available+Base+Types
https://doc.scheer-pas.com/display/BRIDGE/Builder+User+Guide
https://doc.scheer-pas.com/display/DESIGNER/Available+Base+Types

The data
types
provided by a
library are
listed in the Se

 panel.rvice
You can find
more details
on developing
libraries on Sh
aring
Designer

.Content

Implementation

Besides the and types from libraries, you can define your own data types in folder Base Types Implemen
.tation

https://doc.scheer-pas.com/display/DESIGNER/Sharing+Designer+Content
https://doc.scheer-pas.com/display/DESIGNER/Sharing+Designer+Content
https://doc.scheer-pas.com/display/DESIGNER/Sharing+Designer+Content
https://doc.scheer-pas.com/display/DESIGNER/Sharing+Designer+Content

User defined
classes can
be structured
the same way
imported
classes are.
How to do this
is described
in detail on Mo
deling Data

.Structures

The Impleme
folder ntation

also contains
a locked
package Mess

. This age
package has
been
generated by
the Designer,
and holds all
classes
related to the
forms you
have created
in your
service
model. You
cannot
change these
generated
classes.

Using Data Types
You can use all data types, regardless of where they reside - , imported library, or Bridge Base Implemen

, in your service model in the following places:tation

execution diagram
mapping diagram
action script

Execution Diagram

Execution diagrams describe what is actually done in a BPMN task. Execution diagrams contain an UML
activity flow that can be adorned with incoming and outgoing data items.
Concerning data items, you can

create and use local variables to store data during this very task
create persisted variables to store data that should be available in other tasks of the current
process
use variables that have been persisted in a task prior to the present one.

Handling of local and persisted variables is described on and .Adding Variables Persisting Data

Also, data types from imported libraries and from the user-defined may have operations Implementation
associated that can be used with variables of that type. Data items can go into an operation via
parameters, or as a self object.
Refer to

Adding Operation Calls for more information on how to add an operation call to the activity flow
of an execution diagram
Modeling Data Mapping > Operation for more information on how to create a mapping operation.

You can also create your own class operations in the and implement on Implementation action script
them. See below for more details.Action Script

https://doc.scheer-pas.com/display/DESIGNER/Modeling+Data+Structures
https://doc.scheer-pas.com/display/DESIGNER/Modeling+Data+Structures
https://doc.scheer-pas.com/display/DESIGNER/Modeling+Data+Structures
https://doc.scheer-pas.com/display/DESIGNER/Adding+Variables
https://doc.scheer-pas.com/display/DESIGNER/Persisting+Data
https://doc.scheer-pas.com/display/DESIGNER/Adding+Operation+Calls
https://doc.scheer-pas.com/display/DESIGNER/Modeling+Data+Mapping#ModelingDataMapping-Operation
https://doc.scheer-pas.com/display/DESIGNER/Action+Script+Language

Mapping Diagram

Mapping diagrams describe how to transform source data to a target. The types of the source and the
target are defined via the input resp. output parameters of the mapping operation.
Refer to

Modeling Data Mapping for more information on how to create a data model and how to work
with the mapping editor
Mapping Data Structures for more details on the available mapping functions.

Action Script

You can create your own class operations in the and implement action script on them. Implementation
In a script like fashion, you can use the to implement purposes that are not Action Script Language
covered by plain modeling.
You can

create variables using the .create statement
use any valid type related operation as listed on pp.Action Script Language

Some basic information on the xUML Action Language regarding the syntax scheme, object references,
local variables, NULL values, and constructors are listed on .Basics of the Action Script Language

https://doc.scheer-pas.com/display/DESIGNER/Modeling+Data+Mapping
https://doc.scheer-pas.com/display/DESIGNER/Mapping+Data+Structures
https://doc.scheer-pas.com/display/DESIGNER/Action+Script+Language
https://doc.scheer-pas.com/display/DESIGNER/Creating+Objects+of+Base+and+Complex+Types
https://doc.scheer-pas.com/display/DESIGNER/Action+Script+Language
https://doc.scheer-pas.com/display/DESIGNER/Basics+of+the+Action+Script+Language

	Concepts of Data Modeling

