Catching Errors

@ This page explains the Catching Errors in Bridge context. If you were looking for the same
information regarding the PAS Designer, refer to Catching Errors in the Designer guide.

If an error occurs, the default behavior is that the Bridge stops the execution of the current service at this
point and sends back an error message. If you modify your UML model to catch errors, this behavior can
be altered.

However, fatal errors cannot be caught. They are only written to the log file of the xXUML service.
Depending on where the fatal error occurs, these errors are not sent back to the client. For example, if a
Bridge process starts up and cannot find a valid xUML service, the error is logged and the Bridge
process shuts down. Obviously, no client can access this Service. A list of log errors can be found at Log
Errors.

The modeler can catch non-fatal errors by using domain and code values. These values are listed on Syst
em Errors. They are called system errors, because they are returned by the system and not only written
to the logging system.

To catch system errors, a junction (decision) object must be drawn. In the guard specification of the
transitions starting from the junction symbol, the code and domain as listed in System Errors must be
supplied as parameters for the catch statement. Besides using exact code values like 001, it is also
possible to use a wildcard ({}{*}) for all errors of the specified type. Such an example is shown in the
following activity diagram.

In this example, a default address is sent to the output if the SQL statement fails for any reason
(errorCode="*").

Figure: Example of Catching an Error

INOTE: This ctions
sipt sould sad

=)

a
ZFrest,
| ay: Employeekay = a1 el |e¥ist on our test-DB.
OUT-couny Ineadrsstio 25 wel
)
|Reference Guide" jarer.
> scape.
’ - (<<ActionSeript>
o croatedetut adess
P (srot="estates
Fenrown wsdo othavs an auomate |~ < e e {oEroriErer
[olback and commit anavi e e
ek
feisel sst allErors = gatErmors()) allrors : Armay

eenvaBur
defauthddress : Addross
<<amonsennt &

nsert defaul adress into st
{scrpt="appond defautadress to adarassList’)

® ®

else Eng anor Eng

It is also possible to work with a variable. Therefore, you define the variable and refer to it in the error
catch. If the specified error occurs, the Bridge does not abort the request but handles the exception
branch. For example:

Figure: Example of Catching an Error Using Variables

I)

INOTE: This actons
srptsnout eaa

E'% oo cateh oror
code branen,

loecauss the tab

wery address o
{alas = FTEST, ~
ey Employeekey 5| sal="seLECT OUT:D, - does notexston
OUT:ADDRESSTYPE, Jourtest 08,
OUT:STREET,
OUT:ZPCODE
uTCITY,

NOTE: Vi have 1 et
{ne acarassListas wl
bacauss s not i

FROM TADDRESS.fasch
WHERE 14= IN:Key.')

[domains thatcan be ound in ths document
Wieb Sanices Defnons wit UNL
[Refsanca Gude"

or
oror. Bocauss his lstis
fhe outputoftis very
adapter

7 songeri
(cateh emorCoe = STOITOCN | create defaut address
erorTyoe="SoLE] o N
[— X {serot="create defaulhddress:
p TastErTor o
. creats astEror,
- crata alErmors
- S ez
olsel satallEnors = oetErors(;) alErrors: Array
NOTE aetcauahtand not B —|
rethionn we

ave an automatc
follsack and commit behaviour

BT
defauthddress : Adiross

<At
nsertdefoul address ino
(scrip="appen defautadress to addressList’}

O]

eiseEn eroreng

On this Page:

Where Errors Need to be
Caught
Accessing Error Objects

Related Pages:

getError()

getErrors()

Log Errors

System Errors

Error Functions
Modeling Error Handling

https://doc.scheer-pas.com/display/BRIDGE/Log+Errors
https://doc.scheer-pas.com/display/BRIDGE/Log+Errors
https://doc.scheer-pas.com/display/BRIDGE/System+Errors
https://doc.scheer-pas.com/display/BRIDGE/System+Errors
https://doc.scheer-pas.com/display/BRIDGE/System+Errors
https://doc.scheer-pas.com/display/BRIDGE/getError
https://doc.scheer-pas.com/display/BRIDGE/getErrors
https://doc.scheer-pas.com/display/BRIDGE/Log+Errors
https://doc.scheer-pas.com/display/BRIDGE/System+Errors
https://doc.scheer-pas.com/display/BRIDGE/Error+Functions
https://doc.scheer-pas.com/display/BRIDGE/Modeling+Error+Handling
https://doc.scheer-pas.com/display/DESIGNER
https://doc.scheer-pas.com/display/DESIGNER/Catching+Errors

Where Errors Need to be Caught

An error can be caught either immediately after the action node that throws the error (for instance an
SQL adapter action), or directly after the sub-activity containing the action node.

In the latter case, within the activity diagram that implements the sub-activity, any activity step after the
error has occurred is not executed in the action flow. As a rule, if the error is not caught in the activity
diagram, the Bridge passes the error to the caller (the calling sub-activity). However, in order to catch the
error, the junction (decision point) needs to be placed directly after the activity symbol.

Accessing Error Objects

Errors that are caught can be accessed by using the error functions get Error () and get Errors() .
See Error Functions for detailed syntax and semantics.

Every error is described using four classifiers as described in Modeling Error Handling. You can find the
corresponding attributes in class Error.

Figure: Error Class

Error

+callstack : Callstack [0.7%]
+categary : String

+code : String
+description : String
+detail : Any

+domain : String
+response : Blob
+timestamp : DateTime

Additionally, the error object contains information on the callstack, some more error details, response
information (e.g. from a SOAP call),and Runtime 2016.4an error timestamp.

https://doc.scheer-pas.com/display/BRIDGE/getError
https://doc.scheer-pas.com/display/BRIDGE/getErrors
https://doc.scheer-pas.com/display/BRIDGE/Error+Functions
https://doc.scheer-pas.com/display/BRIDGE/Modeling+Error+Handling

	Catching Errors

