
Aggregating Data
Using a MongoDB aggregation pipeline, you can select and aggregate documents. A pipeline is an array
of one or multiple stages that will be processed one after the other. Refer to the for MongoDB Manual
more information on aggregation and pipelines.

The example below shows a simple aggregation pipeline that consists of one single stage: a $group
stage that groups documents and summarizes values

Creating an Aggregation Pipeline
Aggregation stages can be reflected in the Designer using the following class construct:

The displayed class diagram defines aggregations stages to aggregate property per orderValue country
for all or a selected country.

Class Description

1 Stage $group

Describes a group stage.

As a class property cannot have a name , you need to apply stereotype $group XMLEl
and external name .ement $group

Attribute is fix and contains the name of the property to group by. In this example _id
the property to group by is fix. It is which you need to set before $address.country
creating the pipeline (see below).Building the Aggregation Pipeline
The attributes need to be in exact that order to build a correct group stage, therefore
they have stereotype and applied.XMLElement order

2 Sum Operator

The structure below the key defines the part of the grouping.$group $sum
The sum operator (with external name) contains the name of the sumOperator $sum
document property to summarize. In this example the property to summarize is fix. It is

 which you need to set before creating the pipeline (see $orderValue Building the
 below).Aggregation Pipeline

You can add other stages (e.g. a $match stage) to this structure using the same pattern.

On this Page:

Creating an Aggregation
Pipeline
Aggregating Data

Building the
Aggregation
Pipeline
Aggregation Result

Related Pages:

Querying MongoDB
Updating MongoDB
Documents
Aggregating Data
Inserting and Deleting
Documents
MongoDB Adapter
Reference

Related Documentation:

MongoDB Manual
Aggregation

Example File (Builder project Add-ons/MongoDB):

<your example path>\Add-ons\MongoDB\uml\simpleMongoDbAccess.xml

https://docs.mongodb.com/manual/aggregation/
https://doc.scheer-pas.com/display/DESIGNER/Querying+MongoDB
https://doc.scheer-pas.com/display/DESIGNER/Updating+MongoDB+Documents
https://doc.scheer-pas.com/display/DESIGNER/Updating+MongoDB+Documents
https://doc.scheer-pas.com/display/DESIGNER/Inserting+and+Deleting+Documents
https://doc.scheer-pas.com/display/DESIGNER/Inserting+and+Deleting+Documents
https://doc.scheer-pas.com/display/DESIGNER/MongoDB
https://doc.scheer-pas.com/display/DESIGNER/MongoDB
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/aggregation/
https://doc.scheer-pas.com/download/attachments/2286600/MongoDB.zip?version=3&modificationDate=1627545829000&api=v2

Aggregating Data

Building the Aggregation Pipeline

The action script below shows how to build the pipeline.

Action Script Explanation

buildGroupString(out
pipelineStructure:
AggregateOderValue,
 out grouping:
AggregationGroup,
 out sum:
AggregationSum,
 out pipeline:
String[])

Parameters of the action script operation.

create pipeline;
create pipelineStructure;
create grouping;
create sum;

Create the pipeline array.
Create an object of the pipeline structure you have
defined before. In this example, this is piplineStruc

.ture : AggregateOrderValue
Create the stage and it's contained $group $sum
operator.

set pipelineStructure.
groupOperator = grouping;
set pipelineStructure.
groupOperator._id = "$address.
country";

Assign the group stage to the pipeline structure.
Assign the name of the document property to group
by to ._id

set pipelineStructure.
groupOperator.sumOrderValue =
sum;
set pipelineStructure.
groupOperator.sumOrderValue.
sumOperator = "$orderValue";

Assign the sum operator to the group stage.
Assign the name of the document property to
summarize to .sumOperator

append pipelineStructure.
classToExtendedJSON() to
pipeline;

Build the group stage using classToExtendedJSON(
.) Operation

Append the stage to the array.pipeline

The resulting aggregation pipeline will look like

{ "$group" : { "_id" : "$address.country", "sumOrderValue" : { "$sum" :
"$orderValue" } } }

Aggregation Result

{
 "orderVolume": [
 {
 "_id": "USA",
 "sumOrderVolume":
1098.0
 },
 {
 "_id": "CA",
 "sumOrderVolume":
180.0
 }
]
}

As a result of the aggregation, you will get a JSON
document that contains the following order value
aggregation.

https://doc.scheer-pas.com/display/DESIGNER/classToExtendedJSON
https://doc.scheer-pas.com/display/DESIGNER/classToExtendedJSON

If you provide an array of a result structure as an output
for the adapter call, the xUML Runtime will map the
results accordingly.

	Aggregating Data

