Aggregating Data

Using a MongoDB aggregation pipeline, you can select and aggregate documents. A pipeline is an array
of one or multiple stages that will be processed one after the other. Refer to the MongoDB Manual for On this Page:
more information on aggregation and pipelines.

The example below shows a simple aggregation pipeline that consists of one single stage: a $gr oup e Creating an Aggregation
stage that groups documents and summarizes values Pipeline
® Aggregating Data
5 .
Example File (Builder project Add-ons/MongoDB): igg?g;%tt:;
Pipeline
<your example path>\Add-ons\MongoDB\uml\simpleMongoDbAccess.xml o Aggregation Result

82

Related Pages:

® Querying MongoDB
Updating MongoDB
Documents

® Aggregating Data
Inserting and Deleting
Documents
AggregateOrdervalue ® MongoDB Adapter
Reference

Creating an Aggregation Pipeline

Aggregation stages can be reflected in the Designer using the following class construct:

<<XMLElement=> +groupQOperator: AggregationGroup {externalName = "$group”}

Related Documentation:

AggregationGroup

<<XMLElement>> _id: String {order =1}
=<AMLElement=> +sumOrderValue: AggregationSum {order = 2} ® MongoDB Manual

o Aggregation

AggregationSum

<<XMLElement=> +sumOperator: String {externalName = "$sum"}

The displayed class diagram defines aggregations stages to aggregate property orderValue per country
for all or a selected country.

Class Description
1 Stage $group
Describes a group stage.

® As a class property cannot have a name $gr oup, you need to apply stereotype XMLEI
ement and external name $group.

® Attribute _id is fix and contains the name of the property to group by. In this example
the property to group by is fix. It is $address.country which you need to set before
creating the pipeline (see Building the Aggregation Pipeline below).

® The attributes need to be in exact that order to build a correct group stage, therefore
they have stereotype XMLElement and order applied.

2 Sum Operator

® The structure below the $group key defines the $sumpart of the grouping.

® The sum operator (sumOperator with external name $sum) contains the name of the
document property to summarize. In this example the property to summarize is fix. It is
$orderValue which you need to set before creating the pipeline (see Building the
Aggregation Pipeline below).

You can add other stages (e.g. a $match stage) to this structure using the same pattern.

https://docs.mongodb.com/manual/aggregation/
https://doc.scheer-pas.com/display/DESIGNER/Querying+MongoDB
https://doc.scheer-pas.com/display/DESIGNER/Updating+MongoDB+Documents
https://doc.scheer-pas.com/display/DESIGNER/Updating+MongoDB+Documents
https://doc.scheer-pas.com/display/DESIGNER/Inserting+and+Deleting+Documents
https://doc.scheer-pas.com/display/DESIGNER/Inserting+and+Deleting+Documents
https://doc.scheer-pas.com/display/DESIGNER/MongoDB
https://doc.scheer-pas.com/display/DESIGNER/MongoDB
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/aggregation/
https://doc.scheer-pas.com/download/attachments/2286600/MongoDB.zip?version=3&modificationDate=1627545829000&api=v2

Aggregating Data

Building the Aggregation Pipeline

The action script below shows how to build the pipeline.

Action Script

bui | dG oupSt ri ng(out
pi pelineStructure:
Aggr egat eQder Val ue,

out grouping:

Aggr egat i onGr oup,
out sum
Aggr egati onSum

out pipeline:

String[])

create pipeline;

create pipelineStructure;
create grouping;

create sum

set pipelineStructure.
groupOper at or = groupi ng;
set pipelineStructure.

groupOperator._id = "$address.

country";

set pipelineStructure.

gr oupQOper at or . sunOr der Val ue =
sum

set pipelineStructure.
groupQOper at or . sun®r der Val ue.
sunOper ator = "$order Val ue";

append pi pel i neStructure.
cl assToExt endedJSON() to
pi pel i ne;

The resulting aggregation pipeline will look like

{ "$group” {"_id"
"$orderValue" } } }

Aggregation Result

{
"order Vol une": [
"_id": "USA",
"sunmOr der Vol une" :
1098. 0
},
{
"_id": "CA",
"sunmOr der Vol une" :
180.0
}

Explanation

Parameters of the action script operation.

® Create the pipeline array.

"$addr ess. country", "sunOrder Val ue"

Create an object of the pipeline structure you have
defined before. In this example, this is piplineStruc
ture : AggregateOrderValue.

Create the $group stage and it's contained $sum
operator.

Assign the group stage to the pipeline structure.
Assign the name of the document property to group
by to _id.

Assign the sum operator to the group stage.
Assign the name of the document property to
summarize to sumOperator.

Build the group stage using classToExtendedJSON(
) Operation.
Append the stage to the pipeline array.

{ "$sunt

As a result of the aggregation, you will get a JISON
document that contains the following order value
aggregation.

https://doc.scheer-pas.com/display/DESIGNER/classToExtendedJSON
https://doc.scheer-pas.com/display/DESIGNER/classToExtendedJSON

AggregateOrderValueResult

+_id: String
+sumOCrderValue: Float

If you provide an array of a result structure as an output
for the adapter call, the xUML Runtime will map the
results accordingly.

	Aggregating Data

