
Catching Errors
If an error occurs, the default behavior is that the service execution is stopped at this point, and an error
message is sent back. This behavior can be changed by catching the error in your activity diagram.

Fatal errors, however, cannot be caught. Depending on where the fatal error occurs, these errors are not
sent back to the client - they are written to the log file of the xUML service. For example, if an xUML
service starts up and cannot find needed add-ons, this error is logged and the service shuts down. A list
of log errors can be found at .Log Errors

You can catch non-fatal errors by using domain and code values. These values are listed on System
.Errors

You can catch system error in the outgoing flow of a decision. Define a catch statement as a guard
expression, and supply error domain and code as listed on . Besides using exact code System Errors
values like , it is also possible to use a wildcard () for all errors of the specified type. Such an 12 {*}
example is shown in the following activity diagram.

In the example below, the operation checks if there has been data stored to memory at all (errorCode="
). If not (error case), the operation returns false, else the operation returns true.*"

It is also possible to use variables and provide the error code dynamically.

Where Errors Need to be Caught
An error can be caught

either immediately after the action node that throws the error (for instance a MongoDB adapter
action),
or directly after the operation call that calls a sub-activity containing the erroneous action node.

In the latter case, within the activity diagram that implements the operation, any activity step after the
error has occurred is executed. As a rule, if the error is not caught in the activity diagram, the not
Runtime passes the error to the caller (the calling sub-activity). However, in order to catch the error, the
decision needs to be placed directly after the operation call.

On this Page:

Where Errors Need to be
Caught
Accessing Error Objects

Related Pages:

getError()
getErrors()
Log Errors
System Errors

https://doc.scheer-pas.com/display/DESIGNER/Log+Errors
https://doc.scheer-pas.com/display/DESIGNER/System+Errors
https://doc.scheer-pas.com/display/DESIGNER/System+Errors
https://doc.scheer-pas.com/display/DESIGNER/System+Errors
https://doc.scheer-pas.com/display/BRIDGE/getError
https://doc.scheer-pas.com/display/BRIDGE/getErrors
https://doc.scheer-pas.com/display/DESIGNER/Log+Errors
https://doc.scheer-pas.com/display/DESIGNER/System+Errors

Accessing Error Objects
Errors that are caught can be accessed by using the error functions and . Both getError() getErrors()
functions return one resp. multiple object(s) of type .Error

{
 "callstack": ["Callstack"],
 "category": "String",
 "code": "String",
 "description": "String".
 "detail": "Any",
 "domain": "String",
 "response": "Blob",
 "timestamp": "DateTime"
}

The error object contains information on the , some more error , information callstack details response
(e.g. from a REST call), and an error .timestamp

https://doc.scheer-pas.com/display/BRIDGE/getError
https://doc.scheer-pas.com/display/BRIDGE/getErrors

	Catching Errors

