
Polymorphism
This chapter explains how to use polymorphism in the E2E Bridge. However, it is no substitute for a basic
education about polymorphism as found in many textbooks of object-oriented programming.

The way polymorphism is implemented follows more the tradition of C++ and C# than Java or Ruby. The
reason is efficiency and documentation. In our approach only operations that are overridable are really
looked up at runtime and - maybe even more important – operations that are being overridden or
override other operations must explicitly marked by stereotypes.

Abstract Operations

We start with a simple example. Say, you have different order backend systems to be accessed. Before
getting the order data, you must do some generic calculations. This might be represented in an activity
diagram as follows:

Figure: Generic Activity

Let us further assume the operation that fetches the desired in-formation is member of the getOrderData
class . However, you also know that the implementation of depends on the Order getOrderData
accessed backend system. Therefore, we specify that the operation of class is getOrderData Order
abstract (indicated by an italic font in Figure below).

Figure: Declaring Abstract Operations

This means, only its interface is defined. Additionally, we specify sub-classes of Order: and PhoneOrder
. They may represent systems containing orders that arrived by phone respectively by mail. In MailOrder

our example, we want to get the same order data independent of the backend system. Thus, these
classes contain an operation having the same interface (means same operation name and parameter
types) as the abstract operation. The stereotype indicates that these getOrderData <<E2EOverride>>
operations override the behavior of a base class operation, namely the operation of the getOrderData
class Order.

What is the meaning of all this? Assume you call the activity diagram defined in Figure Generic_Activity
using first a object and then a object as input:MailOrder PhoneOrder

On this Page:

Abstract Operations
Static Binding
Frequent Errors
Interfaces

Example File (Builder project Basic Modeling/ClassOperation):

<your example path>\Basic Modeling\ClassOperation\uml\polymAbstractOperations.
xml

https://doc.scheer-pas.com/download/attachments/2286600/ClassOperation.zip?version=3&modificationDate=1635951564000&api=v2

Figure: Calling the Overriden Operations

When executing the action the input object will bring its own Getting phone data phoneOrder
implementation of . This means, the operation being called in the activity getOrderData Do something

 is the operation implemented in the class.generic PhoneOrder
Overriding abstract operations is actually mandatory. The reason is that abstract operations do not have
an implementation by their own. If an abstract operation is not overridden by a sub-class the compiler will
report an error.

Static Binding
Assume, you want to call the operation of class independent whether the runtime getOrderData Order
object is of type , or .Order MailOrder PhoneOrder
In the E2E Bridge context, this is called static binding. It can be achieved by creating an operation call
action and assigning this action the stereotype :<<StaticBinding>>

Figure: Defining static binding

When finding this stereotype, the compiler will bind the operation call to the chosen operation at compile
time.

Frequent Errors
Most frequent errors are forgetting to set the correct stereotypes or declaring overridable operations
static. The following diagram shows some of these errors:

Figure: Most Frequent Errors

Note, if a class contains abstract operations it is not possible to create them since we would then
get an object having an undefined behavior.

Interfaces

Related to polymorphism are interfaces. For example, if you want just define the set of operations an
object must provide, it would be possible to define a class containing abstract operations only. All classes
deriving from this base class must then implement these abstract operations. However, there is a more
elegant way of achieving the same by using interfaces. In this case, the classes realize the interface:

Figure: Using UML interfaces to Specify Class Operations

The main difference to using a set of abstract operations is that a class can realize more than one
interface but it can inherit from just one ancestor class.

To draw an interface select Interfa
 from the toolbar and specify it. ce

Then, the implementation of this
interface is defined by drawing an I

 relationship nterface Realization
between the class and the
interface (see right figure).

Calling an interface operation is done exactly the same way as calling a class operation. The only
difference is that the target classifier of the operation action is an interface instead of a class:

Figure: Calling an interface operation

When invoking the flow above, any object realizing the interface will be accepted as object.Order order

Example File (Builder project Basic Modeling/ClassOperation):

<your example path>\Basic
Modeling\ClassOperation\uml\polymInterfaceOperations.xml

https://doc.scheer-pas.com/download/attachments/2286600/ClassOperation.zip?version=3&modificationDate=1635951564000&api=v2

	Polymorphism

