
Handling Persistent State Objects With the Persistent State 
Adapter

The following chapters describe how to create persistent state objects, retrieve persistent state object 
handles, and get copies of persistent state objects. For all these operations, actions of stereotype <<Persi

 are used.stentStateAdapter>>

The main tagged value provided by the  stereotype used throughout this <<PersistentStateAdapter>>
chapter is . It describes the adapter functionality to be invoked. Currently the following actions are action
supported:

create
getObjectHandle
getObjectHandles
getObjectCopy
loadExternals
getObjectState
commit
rollback

After an object has been created, the only way to influence its behavior is to send signals targeted at this 
object.  These actions are described in detail on .Sending Persistent State Signals  

Creating Persistent State Objects
To create a persisted instance of an object, an instance of the stereotype  <<PersistentStateAdapter>>
with  set to  is used.action create
The compulsory tagged value  defines the type of the created persistent state object. This class class
always has to be of stereotype . A reference to it will also be stored in the attribute <<PersistentState>> cl

 of the returned handle.assifier
There are two ways to pass the initial values of the created object:

If only the primary key values are known, these are passed as separate input values to the 
persistent state adapter. In this case, the persisted object will be empty except for the primary 
key fields.
Alternatively, a pre-filled instance of the given class can be passed. In this case, the persisted 
object will hold a copy of the given input.

In both cases, at least the primary key attributes have to be provided. The resulting object has to be 
unique in the state database. Otherwise, the object cannot be created and an error will be thrown.
The effect of this action is that the transition from the objects initial state is executed . For synchronously
example, in the  state machine (see figure ),PurchaseOrder   State Machine Diagram of a Purchase Order
the transition from the initial state is triggered and the event handler  is invoked. If an Initialize Handler
error occurs while processing the initial transition, the creation of the object will be rolled back and an 
exception is thrown.
After the  action, the object is ready to receive signals that trigger state transitions.create
The  action returns an instance of the class  which is a reference to the created object. create Handle
This handle can be used to send signals to or get copies of a persistent state object.

Figure: Creating a Persistent State Object (Activity Diagram )Create Purchase Order

Related Error Codes

Find a list of all persistent state error codes on .System Errors of the Persistent State Adapter

On this Page:

Creating Persistent State 
Objects

Related Error 
Codes

Retrieving Object Handle
Related Error 
Codes

Retrieving Multiple Object 
Handles
Getting Copies of 
Persistent State Objects
Loading External Persistent 
State Data
Getting State Info
Committing Changes to the 
Persistent State Database
Rolling Back Changes to 
Persistent State Objects

Related Pages:

Sending Persistent State Signals

If errors occur in the context of the activity diagram, they must be handled, otherwise, all persistent 
state actions, including , are rolled back.create

https://doc.scheer-pas.com/display/BRIDGE/Sending+Persistent+State+Signals
https://doc.scheer-pas.com/display/BRIDGE/State+Machine+Diagrams#StateMachineDiagrams-6_advanced_behavioral_modeling_p_4083
https://doc.scheer-pas.com/display/BRIDGE/System+Errors#SystemErrors-PSADSM
https://doc.scheer-pas.com/display/BRIDGE/Sending+Persistent+State+Signals


Error Code Description

PSADSM/5  A persistent object with the same primary key already exists.

Retrieving Object Handle
After creation, an object handle represents a persistent state object. With these handles, it is possible to 
retrieve information about and to send signals to the represented objects.
While a handle is returned by the create action and can be passed as parameter in and out of operations 
and services, it is also possible to retrieve a handle for an object specified by its primary key and class.
A  instance with  set to getObjectHandle is used to implement this <<PersistentStateAdapter>> action
functionality.
The compulsory tagged value class defines what kind of object to look for. This class always has to be of 
stereotype . A reference to it will also be stored in the attribute classifier of the <<PersistentState>>
returned handle.
As input, the persistent state adapter requires all primary keys as defined in the given class. In our 
example, the attributes id and customerID have the stereotype PrimaryKey and identify a persistent state 
object unambiguously (see class diagram in figure ). The input object flow states  A Persistent State Class

 respectively  are mapped to these attributes.purchaseOrderID customerID

If no error occurs, the result is returned in an object of type .Handle

Figure: Action State  (Activity Diagram )getObjectHandle Get Purchase Order  

Related Error Codes

Find a list of all persistent state error codes on .System Errors of the Persistent State Adapter

Error Code Description

PSADSM/12 Requested persistent object does not exist.

Retrieving Multiple Object Handles
An object handle represents a single persistent object instance. The previous explains how to do this for 
exactly one handle. However, it is frequently necessary to retrieve sets of object handles that fulfill 
certain conditions.
This can be achieved by using the  and the  action. The <<PersistentStateAdapter>> getObjectHandles
result of this action is an array of handles that corresponds to persistent objects of type  that comply class
with the criteria given in the .identifierCondition

Within the identifier condition, one can access object identifier attributes by the keyword . The object
referenced object attributes must be stereotyped as . All other variables used in the identifier SearchKey
condition statement must be given as input of the action state:

If there is no input mapping defined – e.g. by the use of input pins – the input in the identifier 
condition is given by the input object flow states.
If there is an input mapping, the input is given by the input parameters such as  as defined date
on tab  on the action specification dialog.Pins

If the result set is not unique, or no persistent state object could be found, an error will be thrown 
that should be handled. This is not done in this example. For more information about error handling, 
see section .Modeling Error Handling

The object state  is of complex type . This class is located in the Persistent State poHandle Handle
module in package .Data / Persistent State / Services / Objects

If no persistent state objects could be found,  error will be thrown. The array of handles will be no
empty.

https://doc.scheer-pas.com/display/BRIDGE/Persistent+State+Classes#PersistentStateClasses-6_advanced_behavioral_modeling_p_9838
https://doc.scheer-pas.com/display/BRIDGE/System+Errors#SystemErrors-PSADSM
https://doc.scheer-pas.com/display/BRIDGE/Modeling+Error+Handling


In the example below, all open purchase orders, for which the identifier conditions evaluates to true, are 
retrieved. These purchase orders are stored in the array .poHandles

Figure: Retrieving Handles to Multiple Persistent Objects (Activity Diagram )Add Gratifications

Besides using identifier conditions, it is also possible to have a state condition to select objects being in a 
given state. This is done using the  tagged value. It refers to a given state. An example stateCondition
can be found in the activity diagram  described in Get Purchase Orders By Date Getting Copies of 

.Persistent State Objects

Getting Copies of Persistent State Objects
The  action returns a  of a given persisted object. As <<PersistentStateAdapter>> getObjectCopy copy
input, the action requires an object handle.

Runtime 2019.10  If you have defined the persistent state class as to have external Builder 7.6.0
attributes (see ), these attributes will only be loaded Persistent State Classes > External Persistent Data
to the object copy, if you set tag  to true on the adapter action.withExternals

In the following example, a list of object handles to s newer than a given date and in the PurchaseOrder
state "Checked out, waiting for closing" is retrieved. Then it iterates over the array of object handles to 
retrieve a copy of the content of each  object.PurchaseOrder

Loading External Persistent State Data
Runtime 2019.10  You can define persistent state attributes as to be external (see Builder 7.6.0 Persistent 

), so their content will only be loaded on demand. This applies State Classes > External Persistent Data
to  as well as to the self context within .getObjectCopy persistent state transactions

To load the externally stored data in self context, you need to call the  with <<PersistentStateAdapter>>
action .loadExternals

The array elements of the output object flow state  must be of type  (the  poHandles Handle Handle
class is located in the Persistent State module in package ).Persistent State / Services / Objects

Please note, that the output of this adapter action, even though an instance of the persistent state 
class, is only a  of the persisted object. Any changes to the returned object or to the snapshot
persisted objects will have no influence on each other.

https://doc.scheer-pas.com/display/BRIDGE/Persistent+State+Classes#PersistentStateClasses-ExternalPersistentData
https://doc.scheer-pas.com/display/BRIDGE/Persistent+State+Classes#PersistentStateClasses-ExternalPersistentData
https://doc.scheer-pas.com/display/BRIDGE/Persistent+State+Classes#PersistentStateClasses-ExternalPersistentData
https://doc.scheer-pas.com/display/BRIDGE/Persistent+State+Transaction+Concept


If you have loaded the external data once in a persistent state transaction, it will be considered loaded by 
the xUML Runtime. Subsequent calls of  will be omitted and logged to the  (log loadExternals service log
level DEBUG). This is to prevent modelers to accidentally overwrite changes to the persistent state 
object.

Getting State Info

The  action  returns information about the current state(s) of an <<PersistentStateAdapter>> getStateInfo
object.

A persisted object can be in multiple states at once. The obvious case occurs when using to split the fork 
process flow into parallel execution. The other, non-obvious but more common case is the use of composi

. When inside a sub-flow, the persisted object actually is in two states: the current state inside te states
the sub-flow and in the enclosing parent state.

Output of  is an  containing elements of type :getStateInfo Array StateInfo

Attribute Description Example

id Name of the state. Purchase_order_is_initialized__waiting_for_fu
rther_orders 

type Type of the state, see St
 for more ates

information.

One of: , , , , , , STATE FORK JOIN CHOICE ENTRY EXIT COMPO
, , , , SITE SUBMACHINE ORTHOGONAL HISTORY INITIAL

entryTime Time object entered the 
state.

2019-09-16T09:00:06.0Z

token Internal id.

parentTok
en

Internal id.

Committing Changes to the Persistent State 
Database
Because of the transactional nature of bridge requests, changes to persistent state objects are not 
written to the persistent state database right away. Until such changes are committed, they are kept in 
memory only. Normally and if no errors occur, changes are committed at the end of a Bridge request (e.
g. a service call). As soon as the database is updated, the changes to the persistent state object 
(including regular or conversational signals) are available for the persistent state engine to process them.

Sometimes there is a need to update the database (and trigger the persistent state engine) somewhere 
in the middle of of a request (e.g. for persistent state conversations, see ). This can be Conversations
done using the  action on the .commit <<PersistentStateAdapter>>

If you change external attributes in self context, they will be stored at the end of the transaction. This 
applies only if they have been loaded before.

Deprecated This function is deprecated. Please use the  instead, Persistent State Control Adapter
esp. .queryObjects()

https://doc.scheer-pas.com/display/BRIDGE/xUML+Service+Standard+Log
https://doc.scheer-pas.com/display/BRIDGE/States#States-Fork
https://doc.scheer-pas.com/display/BRIDGE/States#States-CompositeandSubmachineStates
https://doc.scheer-pas.com/display/BRIDGE/States#States-CompositeandSubmachineStates
https://doc.scheer-pas.com/display/BRIDGE/States
https://doc.scheer-pas.com/display/BRIDGE/States
https://doc.scheer-pas.com/display/BRIDGE/Conversations
https://doc.scheer-pas.com/display/BRIDGE/Retrieving+Persistent+State+Metadata+with+the+PersistentStateControl+Adapter
https://doc.scheer-pas.com/display/BRIDGE/Retrieving+Persistent+State+Metadata+with+the+PersistentStateControl+Adapter#RetrievingPersistentStateMetadatawiththePersistentStateControlAdapter-QueryingPersistentStateObjectsofaGivenClass


Figure: Committing Changes to the Persistent State Database

Rolling Back Changes to Persistent State Objects
Because of the transactional nature of bridge requests, changes to persistent state objects (including 
regular or conversational signals) are not written to the persistent state database right away. Until such 
changes are committed (see also ), they are kept Committing Changes to the Persistent State Database
in memory only. If an error occurs while working on a persistent state object, any changes that are not 
yet committed will be rolled back automatically. This rollback can be triggered manually by calling the <<P

 with action .ersistentStateAdapter>> rollback

For more details see also .Persistent State Transaction Concept

https://doc.scheer-pas.com/display/BRIDGE/Persistent+State+Transaction+Concept

	Handling Persistent State Objects With the Persistent State Adapter

