
Conversations

In certain cases a communication from an object to a synchronous service is required.
Imagine a service using persistent state, that sends a to a customer object and has to GiveCreditSignal
wait for approval or rejection before proceeding. An inelegant and very inefficient way to implement this is
a loop that invokes or until the approval went through. A much better getStateInfo getObjectCopy
solution would allow the service to wait for a signal sent back by the object.

This construct of a conversation is implemented by two elements: a signal and a conversationID. The
waiting service waits for a specific signal sent by the conversation partner. This signal is identified by the

 and the , that can be passed as a parameter to each signal action.signal name conversationID

The conversations are persisted in a persistent state database. If you stop a service or the service
crashes between sending and accepting, the service will try to complete the conversation after service
restart. Nevertheless, the accept event timeouts continue counting down and is considered after service
restart.
If you use an external persistent state database, multiple services with same persistent state can owner
send conversation signals between each other.

Initiating a Conversation and Waiting for a
Conversation Response
Look at the activity diagram below. It is depicting the process of initiating a conversation and waiting for
the response afterwards.

Figure: Sending Signal to an Object and Waiting for the Response

1. Initiating the Conversation

In the example above, a request for credit is sent to a persistent state object . The object is Customer
identified by its customer number, which is the primary key of the class.Customer

On this Page:

Initiating a Conversation
and Waiting for a
Conversation Response

1. Initiating the
Conversation
2. Waiting for the
Conversation
Response

Sending Conversation
Signals

Related Pages:

Contents of the
Transaction Log

Example File (Builder project Advanced Modeling/PState):

<your example path>\Advanced Modeling\PState\uml\pstateConversation.xml

The conversation ID will be logged as correlation ID to the transaction log for send signal actions
and (see).accept event actions Contents of the Transaction Log

https://doc.scheer-pas.com/display/BRIDGE/Handling+Persistent+State+Objects+With+the+Persistent+State+Adapter#HandlingPersistentStateObjectsWiththePersistentStateAdapter-GettingStateInfo
https://doc.scheer-pas.com/display/BRIDGE/Handling+Persistent+State+Objects+With+the+Persistent+State+Adapter#HandlingPersistentStateObjectsWiththePersistentStateAdapter-GettingCopiesofPersistentStateObjects
https://doc.scheer-pas.com/display/BRIDGE/Contents+of+the+Transaction+Log
https://doc.scheer-pas.com/display/BRIDGE/Contents+of+the+Transaction+Log
https://doc.scheer-pas.com/download/attachments/2286600/PState.zip?version=3&modificationDate=1653989796000&api=v2
https://doc.scheer-pas.com/display/BRIDGE/Contents+of+the+Transaction+Log

Then, a conversation id is created and a signal is sent to the customer object. The GiveCredit
conversationID is passed to the Customer object, so it can be used later on to send the reply (see Sendin

).g Conversation Signals

Persistent state signals are implicitly committed on session end only and signals will be transferred to the
recipient (also see). So in this case, the persistent after commit xUML Runtime Transaction Concepts
state adapter has to be manually committed, because the accept event action was added to the same
activity diagram. Manually committing is done by the use of the action .commit

2. Waiting for the Conversation Response

In part two of the activity diagram, the service is waiting for the response to arrive. Response means a
signal sent by a send signal action with a given conversationID. In this case, this is the credit decision
signal (the very same signal that was sent by the send signal action described below in Sending

). The service will wait for the signal until the timeout given in the tagged value Conversation Signals time
 is reached.out

The result of the credit check is transported in an attribute of the signal.

Figure: Attributes of the Returning Signal

This is done using the stereotype. When a signal arrives, its attributes are <<E2EAcceptEventAction>>
passed as output. If no signal arrives within the given timeout, an exception will be thrown. Default
timeout is 30 seconds.

Sending Conversation Signals
When a conversation partner is waiting for a response, you can send a signal to this conversation using
the . The interface is very similar to sending . However <<E2ESendSignalAction>> signals to objects
only the provided is relevant to identify the target conversation of the signal.conversationID

Figure: Constructing a Handle and Sending a Conversation Signal

The conversation id passed to the accept event action must be exactly assigned that name: convers
. Otherwise, it will not be recognized as a conversation id.ationID

https://doc.scheer-pas.com/display/BRIDGE/xUML+Runtime+Transaction+Concepts
https://doc.scheer-pas.com/display/BRIDGE/Handling+Persistent+State+Objects+With+the+Persistent+State+Adapter#HandlingPersistentStateObjectsWiththePersistentStateAdapter-SendingSignals

In the example above, the conversation ID received earlier has been stored in attribute creditRequestor
 of persistent state class customer. Now, it is re-used when sending the signal the ConversationID

conversation partner is waiting for. Additionally a Boolean is passed as a signal parameter.

The conversation id passed to the send signal action must be exactly assigned that name: conversa
. Otherwise, it will not be recognized as a conversation id.tionID

	Conversations

