
Sending Persistent State Signals
The following chapters describe how to send and handle signals of persistent state objects.

After an object has been created, the only way to influence its behavior is to send signals targeted at this
object. This can either be done by using the <<PersistentStateSignalAction>> or the <<PersistentStateBr

 oadcastSignal>> adapter. Both send signals, either targeted at a certain object given by its handle or to a
whole set of objects defined by search predicates

Sending Signals
A handle can be used to send signals to the object instance represented by the handle. To send a signal
the stereotype is used.<<PersistentStateSignalAction>>

Figure: Sending Signals (Activity Diagram)Add New Item

The send signal action requires a valid referencing an existing persistent state object. The type of handle
signal to be sent – in this case – is defined in the specification dialog, as shown below. AddItemSignal
Attributes declared in the chosen signal classifier and mappings in the activity diagram define the signal

 that can be sent (see figure above).parameters

Figure: Configuration of Persistent State Signal Action

If the signal cannot be delivered, the xUML Runtime calls the default handler for the sent signal as
specified in the target class. For more details about this mechanism, refer to the next chapter.

See for more information about how signals are processed on the receiving side.Signal Events

Broadcasting Signals

On this Page:

Sending Signals
Broadcasting Signals
Handling Undeliverable
Signals

Related Pages:

Handling Persistent State
Objects With the Persistent
State Adapter
Contents of the
Transaction Log

Upon sending a signal, a correlation ID will be logged to the transaction log (see Contents of the
). If a conversation ID is supplied, this will be the conversation ID. Otherwise, a Transaction Log

unique value will be generated.
The same correlation ID will be logged for the send action and for the triggered transition.

The tagged value (also depicted in the above figure) is deprecated since it does maxDeliveryTrials
not comply with the UML semantics of sending signals.

If errors occur in the context of the activity diagram, they must be handled. Otherwise, all persistent
state actions are rolled back. However, there is the possibility to define a default error handler that is
invoked for all unhandled errors (see).Handling Unhandled Errors

https://doc.scheer-pas.com/display/BRIDGE/State+Machine+Diagrams#StateMachineDiagrams-SignalEvents
https://doc.scheer-pas.com/display/BRIDGE/Handling+Persistent+State+Objects+With+the+Persistent+State+Adapter
https://doc.scheer-pas.com/display/BRIDGE/Handling+Persistent+State+Objects+With+the+Persistent+State+Adapter
https://doc.scheer-pas.com/display/BRIDGE/Handling+Persistent+State+Objects+With+the+Persistent+State+Adapter
https://doc.scheer-pas.com/display/BRIDGE/Contents+of+the+Transaction+Log
https://doc.scheer-pas.com/display/BRIDGE/Contents+of+the+Transaction+Log
https://doc.scheer-pas.com/display/BRIDGE/Contents+of+the+Transaction+Log
https://doc.scheer-pas.com/display/BRIDGE/Contents+of+the+Transaction+Log
https://doc.scheer-pas.com/display/BRIDGE/State+Machine+Diagrams#StateMachineDiagrams-HandlingUnhandledErrors

If signals are to be sent to more than one object it is possible to fetch a set of handles using getObjects
and then send signals to each of these objects by iterating over the handles. However, this is Handles

rather inefficient, thus we recommend using the adapter for this <<PersistentStateBroadcastSignal>>
purpose. This adapter sends a signal to a set of objects that is defined by the tagged values stateConditi

and . The semantics of these tagged values is the same as for on identifierCondition getObjectsHandles
. In the example below, we send the signal to all objects of class being in state Finish TestMachine Stat

having a attribute bigger than the object: e1 counter counter

Figure: Broadcast Signals (Activity Diagram Add New Item)

The input of the <<PersistentStateBroadcastSignal>> adapter consists of the following objects:

Objects used in the : the object is used in the t identifierCondition counter identifierCondition
o filter all PS objects having a counter greater than the counter given in the activity diagram.
Members of the signal given by the tag : the objects and are members of the signal code error
signal .Finish

 signalsPerDBTransaction:Integer this optional input parameter defines the maximum :
number of signals in a DB transaction. If there are more target objects, more than one
transaction will be performed. If no value is given, all signals are committed in one transaction.

The output of the <<PersistentStateBroadcastSignal>> adapter consists of the following objects:

 allDBTransactionsCompleted:Boolean this optional parameter is true if all database :
transactions completed successfully.

:matchedObjects:Integer optional parameter giving the number of objects that matched the
user query.

:sentSignals:Integer optional parameter giving the number of signals actually sent. If allDBTra
is true, this should be equal to nsactionsCompleted .matchedObjects

Handling Undeliverable Signals
When sending signals, the xUML Runtime puts them into an event queue where they stay until being
delivered. However, it might happen that a signal cannot be delivered, because the target object is not in
a state that accepts this very signal.
The xUML Runtime will try to deliver the signal once. If a signal cannot be delivered, the default signal
handler is invoked. Signals that do not have a default signal handler will be silently discarded. Thus, it is
strongly advisable for the modeler to use the default handler mechanism.
In the PurchaseOrder example, the persistent state class defines an operation (see closeSignalDefault
figure). For the use as a signal handler, this operation requires the stereotype A Persistent State Class <

 and has to be defined as . As parameters, it takes the <PersistentSignalDefaultHandler>> static
undelivered and a structure of type . While signal is defined model specific, holds signal Event Event
generic system information about the signal delivery. The most important attributes are:

Element Description

Example File (Builder project Advanced Modeling/PState):

<your example path>\Advanced Modeling\PState\uml\pstateBroadcast.xml

https://doc.scheer-pas.com/display/BRIDGE/Persistent+State+Classes#PersistentStateClasses-6_advanced_behavioral_modeling_p_9838
https://doc.scheer-pas.com/download/attachments/2286600/PState.zip?version=3&modificationDate=1653989796000&api=v2

id is a unique identification of the event.

classifier is a reference to the signal class.

objectID is the unique identifier of the object the signal belongs to, this is identical to the objectID
of an object handler.

eventType in this case is .Signal

eventBlob holds the content of the signal.

eventTS holds the planned time of event delivery. In this case, it is the time of the last delivery trial.

creationTS holds the time when the event was created. In this case, it is the time when the signal
was sent to the object.

For example, the activity diagram below implements the default handler operation of the for CloseSignal
the class. This means, if the cannot be delivered, this activity diagram PurchaseOrder CloseSignal clos

 will be invoked. The activity diagram gets the undeliverable signal eSignalDefaultHandler closeSignal
(not used here) and an object of type Event with system information as input.

Figure: CloseSignal and its Default Handler Implementation (Activity Diagram Default Close Handler)

Do not use this attribute, as the same content is decoded into the signal parameter.

	Sending Persistent State Signals

