
Persistent State Transaction Concept
The E2E xUML Runtime works with the concept of . Sessions are equivalent to units of work, sessions
that can be committed or rolled back depending on the status at the end of the session. Refer to xUML

 for more details on the transaction concept in general.Runtime Transaction Concepts

Transaction Rollback Behavior

Persistent state transactions will behave on rollback like listed in the tables below:

Simple State Machine

Persistent State
Transaction

Error
in

Behavior State

1 init state -
initialize handler
- entry action

initialize
handler

object not created -

entry
action

object not created -

2 exit action -
transition - entry
action

exit
action

rollback of exit behavior
changes

source state

transition rollback of changes on
transition and exit behavior

source state

entry
action

rollback of entry behavior,
transition and exit
behavior changes

source state

3 do activity do
activity

rollback of changes
Exit action will wait until
do activity is finished.

state machine continues with object lifecycle
(independent of error), see also Do Activity

 belowParticularities

State Machine with Fork and Join

On this Page:

Transaction Rollback
Behavior

Simple State
Machine
State Machine
with Fork and Join
State Machine
with Choice
State Machine
with Substate
Machine
State Machine
with Composite
States

Do Activity Particularities
Implicit and Explicit
Commits

Related Pages:

xUML Runtime Transaction
Concepts
Committing Changes to the
Persistent State Database

 Do Activity

https://doc.scheer-pas.com/display/BRIDGE/xUML+Runtime+Transaction+Concepts
https://doc.scheer-pas.com/display/BRIDGE/xUML+Runtime+Transaction+Concepts
https://doc.scheer-pas.com/display/BRIDGE/xUML+Runtime+Transaction+Concepts
https://doc.scheer-pas.com/display/BRIDGE/xUML+Runtime+Transaction+Concepts
https://doc.scheer-pas.com/display/BRIDGE/Handling+Persistent+State+Objects+With+the+Persistent+State+Adapter#HandlingPersistentStateObjectsWiththePersistentStateAdapter-CommittingChangestothePersistentStateDatabase
https://doc.scheer-pas.com/display/BRIDGE/Handling+Persistent+State+Objects+With+the+Persistent+State+Adapter#HandlingPersistentStateObjectsWiththePersistentStateAdapter-CommittingChangestothePersistentStateDatabase
https://doc.scheer-pas.com/display/BRIDGE/States#States-DoActivity

Persistent State
Transaction

Error
in

Behavior State

1 exit behavior + transition + fork +
multiple(transition + entry behavior)

entry
action

rollback of all forked transitions, if
one fails

state before fork

2 multiple(exit behavior + transition) +
join + entry behavior

exit
action

rollback of exit behavior changes faulty state and
general join state

transition rollback of changes on transition
and exit behavior of faulty path

faulty state and
general join state

entry
action

rollback of entry behavior and
transition from join to next state

general join state

State Machine with Choice

Persistent State
Transaction

Error
in

Behavior State

multiple(exit behavior + transition) + choice + multiple
(transition + entry behavior)

entry
action

rollback of
changes

source state
before choice

State Machine with Substate Machine

Persistent
State
Transaction

Error in Behavior State

substate
machine

1 initialize
handler

rollback of changes source state

2 entry
action

rollback of changes source state

3 do
activity

rollback of changes
Exit action will wait until do
activity is finished.

state machine continues with object lifecycle
(independent of error), see also Do Activity

 belowParticularities

4 exit
action

rollback of changes faulty substate and general submachine state

root state
machine

5 entry
state after
substate

rollback of changes of entry
action, no rollback of exit
substate actions

general submachine state

State Machine with Composite States

Persistent State
Transaction

Error
in

Behavior State

composite states (choice + two entry points)

1
transition
to entry
point

rollback of
changes

source state
before
choice

2
transition
from
entry
point

rollback of
changes

source state
before
choice

3 entry
action of
first
substate

rollback of
changes

source state
before
choice

4 entry
action of
second
substate

rollback of
changes

faulty
substate
and general
composite
state

5
transition
to exit
point

rollback of
changes

source state
and general
composite
state

6
transition
from exit
point

rollback of
changes

general
composite
state

composite states (fork + two entry points + join within composite) 1 entry
action

rollback of
all forked
transitions,
if one fails

state before
fork

2 entry
action
within
composite

rollback of
actions
related to
faulty branch

compo
site
state
branch
1
faulty
state
compo
site
state
branch
2
join

3 transiti
on to
exit point

compo
site
state
branch
1
compo
site
state
branch
2
join

Do Activity Particularities
Persistent state do activities are handled by the E2E Runtime different than other persistent state
activities - they are processed asynchronously in a separate session and the persistent state object is not
locked during execution of the do activity.
This may lead to the following issues:

Concurrent Updates on the Persistent State Object
While the do activity is still processed by the E2E Runtime, the persistent state object can be
changed by other processes. The Runtime will try to merge the changes in this case. If the do
activity changes and another process triggers a change of , the final persistent state self.a self.b
object will contain both changes. In case that both change the same attribute, the last change
will win.
Error in Do Activity (1)
If an error occurs during execution of a do activity, the E2E Runtime will throw [PSADSM][29]

 (if no error handler is implemented) and [Fatal error while executing doActivity
rollback all changes of the do activity. Nevertheless, the persistent state object is not stalled but
continues with its lifecycle.
In this case, it is best practice to implement an error handler that catches the mentioned error
and does the necessary handling.
Error in Do Activity (2)
After a do activity, changes to the self-object are not automatically persisted. To modify contents
of the persisted object, the do activity has to return the corresponding attributes as output
parameters. In case of error (and rollback), this leads to the fact that the output parameters are N

. As a consequence, the related persistent state attributes are set to , too, and not ULL NULL
rolled back to the previous value.
In this case, it is best practice to implement an error handler that catches the above mentioned
error and does the necessary handling.

Apart from this, the do activity is the only activity within an persistent state object's lifecycle the modeler
can be sure that the object is the desired state. So, for example, if you want to inform other really in
parties that a persistent state object is in a specific state, you should always do this in the do activity.
Otherwise, you can run into race conditions (e.g. if you use the entry action for this and the other party
reacts very fast).

Implicit and Explicit Commits

It is strongly recommended to use error handlers together with do activities.

Changes to persistent state objects are not saved to the persistent state database immediately, but on
transaction end. This is called . If an error occurs during a transaction, transaction implicit commit
changes will be rolled back to the beginning of the transaction (see xUML Runtime Transaction Concepts
and).Transaction Rollback Behavior
Additionally, the following action types are part of the transaction and affected on commit / roll back if
they were used in persistent state context:

Action Type Example

database access insertion or deletion of database records

persistent state
handling

creation of a persistent state object, sending of a persistent state signal,
sending of conversation signals

JMS activities sending or receiving of JMS messages with acknowledge mode transacted

POP3 activities deletion of mails from POP3 server

All other actions or adapter calls (e.g. SOAP call, REST call, SAP access, ...) have to be rolled back
manually in case of error.

User can force the persistent state machine to commit changes to the database by calling the Persistent
State Adapter with action (see). This is commit Committing Changes to the Persistent State Database
called . Changes that have been explicitly committed will not been rolled back on explicit commit
transaction error.
Use explicit commits if you do not want certain actions to be rolled back on error, e.g. persistent state
signals in case of conversations.

Regarding service robustness, it is not recommended to model too complex transactions, as rollback on
error may lead to unwanted results. Better implement intermediate states that can serve as rollback-
points in case of error. See also for more information on do activities. Do Activity

https://doc.scheer-pas.com/display/BRIDGE/xUML+Runtime+Transaction+Concepts
https://doc.scheer-pas.com/display/BRIDGE/Handling+Persistent+State+Objects+With+the+Persistent+State+Adapter#HandlingPersistentStateObjectsWiththePersistentStateAdapter-CommittingChangestothePersistentStateDatabase
https://doc.scheer-pas.com/display/BRIDGE/States#States-DoActivity

	Persistent State Transaction Concept

