
Persistent States Concept
States and Life Cycle
Technically, creating a persistent state object means to create entries in generic database tables. In this
context, the term generic means that the database tables do not depend on the object's class, because
any class will be mapped to the same tables.<<PersistentState>>

These tables hold information about the state of the object and all object data. After creation of a
persistent state object, only the object's state machine diagram defines its life cycle. This means, only
events defined in the state machine diagram can change object states and object data (for details see Sta

).te Machine Diagrams

Events in this context are:

completion event: triggered by an automatic state transition
signal event: triggered by a signal reception
time event: triggered by a time trigger

For example, signals sent to the object transport data that can be added to the object. However, it is not
possible to retrieve the object from the database, manipulate it, and write it back afterwards – though it is
possible to retrieve a copy of a persisted object from the database. This means, after having created a
persistent state object, the object lives on the database until it reaches its final state. Again, the object's
state machine diagram defines which events may trigger the transition into its final state. If the object
reached its final state, it will be deleted.

Figure: Conceptual Lifecycle of a Persistent State Object

This concept has several consequences:

First, state charts describe the life cycle of objects completely. This means, the modeler is
relieved from explicitly managing the destruction of persistent state objects.
Additionally, state charts give a very concise and elegant overview of the life cycle of a
persistent state object, thus increasing development speed and model maintainability.

Data Storage
The persisted data, current states and pending events are either held in memory, in a local file or an
external RDBMS.

Memory data storage has a huge performance advantage (5-15 times) over the others. The
content of the state database is written to a local file upon shutdown and read from the same file
when the service is started again. However, in the case of a power failure or server crash, any
changes to the state database since the last start-up will be lost.
A as data storage is about 5 times slower than memory. Unless the file system is local file
corrupted, no data is lost upon power failure or server crash.
As local file and memory use the same format, it is possible to switch between these
configurations without losing any data. In both cases, the generated file is a SQLite pstate.db
database file. For more information about SQLite and how to access this database, see Getting

.Started with Persistent State Databases
Using an is about 2-3 times slower than local files and requires some further external RDBMS
actions by the modeler and database administrator to get started. For external data storage, the
database dependency has to be drawn in the deployment diagram and an empty database
schema/instance needs to be set up by the administrator. However, this enables the modeler to
use any relational database being supported by the xUML Runtime.
The major advantage of this approach is that backup, restore procedures and scaling
mechanisms are delegated to the database management. Additionally any service that

On this Page:

States and Life Cycle
Data Storage
Signals

Related Pages:

Getting Started with
Persistent State Databases
State Machine Diagrams
Sending Persistent State
Signals
Persistent States of xUML
Services on the Bridge

https://doc.scheer-pas.com/display/BRIDGE/State+Machine+Diagrams
https://doc.scheer-pas.com/display/BRIDGE/State+Machine+Diagrams
https://doc.scheer-pas.com/display/BRIDGE/Getting+Started+with+Persistent+State+Databases#GettingStartedwithPersistentStateDatabases-SQLite
https://doc.scheer-pas.com/display/BRIDGE/Getting+Started+with+Persistent+State+Databases#GettingStartedwithPersistentStateDatabases-SQLite
https://doc.scheer-pas.com/display/BRIDGE/Getting+Started+with+Persistent+State+Databases
https://doc.scheer-pas.com/display/BRIDGE/Getting+Started+with+Persistent+State+Databases
https://doc.scheer-pas.com/display/BRIDGE/State+Machine+Diagrams
https://doc.scheer-pas.com/display/BRIDGE/Sending+Persistent+State+Signals
https://doc.scheer-pas.com/display/BRIDGE/Sending+Persistent+State+Signals
https://doc.scheer-pas.com/display/BRIDGE/Persistent+States+of+xUML+Services
https://doc.scheer-pas.com/display/BRIDGE/Persistent+States+of+xUML+Services

accesses the same state database can send signals to the same objects. This includes, for
example, services that implement load-balancing behavior sharing the same objects.
A fourth option called is similar to memory but does not backup/restore persistent state volatile
data to a file upon shutdown and restart. This storage method is recommended if the state
database should be reset after each service restart.

It is not necessary to adapt database schemas when changing the structure of the persisted data
because the database tables are generic. This makes the database model flexible and robust.

Signals
Sending signals means, that a signal message is queued in a table of the state database.
Asynchronously, the xUML Runtime tries to deliver signals to its target object. The number of delivery
retrials is limited and can be defined by the modeler (see). If the system does not Sending Signals
succeed in delivering after the given number of retries or the object is destroyed before delivery, the
xUML Runtime calls the optional default handler for the signal – if the modeler did define such a handler
(see). Afterwards the undelivered signal is automatically removed from Handling Undeliverable Signals
the queue and database.

In order to avoid concurrency issues, signal delivering and handling does comply with the following rules:

Rule Description

Signals are never lost. Every signal will be delivered to the object or external entity, to which it is
directed, or after expiration will be handled by the default handler.

A signal is "used up"
when it is accepted by
an object.

The xUML Runtime removes the signal from the signal queue. This implies
that signals cannot be consumed multiple times.

Signals are
asynchronous.

 This means that signals are not delivered "immediately" but some time
after a signal is generated. In practice, this is most probably instantly, but
may be delayed by concurrency, shutdown or other events.

Signals are being
queued.

Multiple signals can be outstanding for a given persistent state object.

New signals are
processed only after
completion of the
previous signal (Run-
To-Completion).

When a persistent state object completes an event handler, it is in the new
state. Only after completion of the event handler, the object can accept a
new available signal if any such exists. This is called Run-To-Completion.

Sending order is
preserved in one
object context.

If a single object generates multiple signals to a receiving instance, the
signals will be received in the order generated.

Sending order is not
preserved over
different object
contexts.

If there are signals outstanding for a particular persistent state object that
were generated by different senders, it is indeterminate, which signal will
be accepted first. The signals are accepted in the order they are received
in the queue, which may differ from the order they have been generated.

How to operate xUML services containing Persistent State objects in various network setups is
described on the Bridge User's Guide on pp.Persistent States of xUML Services

https://doc.scheer-pas.com/display/BRIDGE/Sending+Persistent+State+Signals#SendingPersistentStateSignals-SendingSignals
https://doc.scheer-pas.com/display/BRIDGE/Sending+Persistent+State+Signals#SendingPersistentStateSignals-HandlingUndeliverableSignals
https://doc.scheer-pas.com/display/BRIDGE/Persistent+States+of+xUML+Services

	Persistent States Concept

