
Overview on the Generated Browser Code Elements
Generating a web based user interface from a UML model implementing the MVC pattern means
mapping the pattern to code which the web browser can interpret.

UML GUI to HTML
To understand the generated HTML code it is essential to know which part of the code resembles which
modeled user interface component.

The code in the above screenshot describes the structure and grouping of the HelloWorld UI example
application. It is important to know that depending on the layout type that was chosen, the HTML code
will differ. The above example uses the flow layout. In case of the usage of the grid layout, the
corresponding HTML elements will be nested into table cells.

Line UML Model Element Description

27 The HelloWorldPanel <<
 element is Panel>>

generated to a <form>
HTML tag holding all the
UI elements within a
group (Line 27-43). The
form attribute holds the id
name which was given to
the UML <<Panel>>
object within MagicDraw.

The form-attribute class
holds the name of the
CSS class definition
which describes the look
and feel of the element.
Please refer to the UI
Widgets chapter for more
detailed information.
Due to the fact that in
most cases a UML
container will hold form
elements, container
elements are translated
to HTML forms.

On this Page:

UML GUI to HTML
Extensibility of CSS and
JavaScript
Extensibility of the
Controller

Retrieving Data
Using
jQuery
Using
Bound
Controller
Variables

JavaScript
Attribute Types
Creating custom
JavaScript
functions

Events

Related Pages:

Overview on the Used Web
2.0 Components
Overview on the Used
Frameworks
Overview on the Generated
Browser Code Elements
Debugging Custom
JavaScript Functions
Optimizing Generated
JavaScript

In case the is not id
a unique name the
compiler will
generate a warning
and will create a
new unique from id
the name given. If
there is no id set,
the compiler will
also create an .id

https://doc.scheer-pas.com/display/BRIDGE/Overview+on+the+Used+Web+2.0+Components
https://doc.scheer-pas.com/display/BRIDGE/Overview+on+the+Used+Web+2.0+Components
https://doc.scheer-pas.com/display/BRIDGE/Overview+on+the+Used+Frameworks
https://doc.scheer-pas.com/display/BRIDGE/Overview+on+the+Used+Frameworks
https://doc.scheer-pas.com/display/BRIDGE/Debugging+Custom+JavaScript+Functions
https://doc.scheer-pas.com/display/BRIDGE/Debugging+Custom+JavaScript+Functions
https://doc.scheer-pas.com/display/BRIDGE/Optimizing+Generated+JavaScript
https://doc.scheer-pas.com/display/BRIDGE/Optimizing+Generated+JavaScript

28-29 The UML <<GroupBox>>
element is generated into
a HTML tag. <fieldset>
The fieldset attribute
name GroupBox1 is a
generic name due to the
fact that the UML
element was not named
when modeled. In case of
customized scripts
needing to access the
fieldset using a specific
name, the UML element
needs to be given a
name according to the
specifications. The class
attribute references the
CSS class definitions
which define the look and
feel of the Group Box.
The HTML tag <legend>
holds the title of the <field

. This title is set set>
within the properties of
the UML element within
MagicDraw.

31 The Hello World UML <<L
 is translated into abel>>

a HTML tag. For
the controller JavaScript
to be able to access this
element and do the text
change the tag
has an id attribute.

35 The UML element <<Text
 is generated as a Field>>

HTML tag. The <input>
attributes and name id
have a generically
generated name. The
default text is a text
translated as placeholder
attribute.

39 The UML element <<Butt
 is generated to a on>>

HTML tag. The <button>
id attribute holds the
defined name changeTex

. The tButton <<Button>>
property Text holds the C

 button label.hange Text

44 The UML <<Frame>>
container used for the
modal dialog is
generated to a <form>
tag. The behaviour as a
modal dialog is steered
by the CSS class ui-

 defined within the dialog
 tag. The <form> id

attribute is given the
name specified within the

 properties as <<Frame>>
well as the dialogs title Co

.nfirmation

46 see description of lines
28-29

51-52 see description of line 39

Extensibility of CSS and JavaScript
The HTML application file hold all references to libraries, frameworks, configuration and style sheets
within the section. Next to the standard libraries which should not be edited, there are files which <head>
can be amended to extend functionality and design of the xUML UI application.

Extensibility of the Controller
The controller can be extended with custom JavaScript functions which enable to enrich the <<UI>>
functionality xUML UI application. The custom JavaScript functions have full access to controllers <<UI>>
context e.g. accessing defined global variables, other JavaScript functions or even accessing an external
system using AJAX requests. Due to the fact that xUML UI applications are based on jQuery, all the
features of this powerful library can be used.

The JavaScript operation name is defined by assigning the wanted name to a default operation. The
normal class operation will be generated as a JavaScript function by assigning the <<UIJavaScript>>
stereotype.
The JavaScript code itself can be edited either using the specification dialog of the operation element or
by using the JavaScript Editor. The editor is accessed via right-clicking on the operation element and
choosing the JavaScript Editor (Shift-Enter). The JavaScript Editor does support syntax highlighting but
does not support code completion.

The actual JavaScript is set within the operations property field. The JavaScript function name can Script
be changed through editing the properties field.Name

The generated JavaScript function will look like this:

controller.sumJQuery = function() {
 alert('The sum is: '+ (parseInt($("#numberOne").val()) +
 parseInt($("#numberTwo").val())));
}

Retrieving Data

There are different ways to get data from the user interface or the JavaScript application (Controller) itself.

Using jQuery

This simple snippet will use jQuery to find the element and retrieve its value. This snippet numberOne
can be used directly within the operation without modelling further elements.<<UIJavaScript>>

var val = $("#numberOne").val();

jQuery offers a wide range of functions to handle data within E2E UI applications. For a detailed
documentation including tutorials and examples on jQuery visit their documentation on http://docs.jquery.

.com/Main_Page

Another way of course is to access the values using standard JavaScript functionality to access the DOM
structure.

var val = document.getElementsById("numberOne");

or

var val = document.getElementsByName("numberOne");

Using Bound Controller Variables

Custom global variables defined within the controller can of course be bound to user interface <<UI>>
elements. The values are automatically available to the global variables as soon as data is written into
the text fields. The binding is done between the class and the user interface elements.<<UI>>

To be able to access these global variables the pointer is used:this

var sum = parseInt(this.numberOne)+ parseInt(this.numberTwo);

JavaScript Attribute Types

The id and name HTML elements attributes share the same unique identifier. The exception to this
are Check Box and Radio Button elements. Their name attribute is used for grouping multiple
elements and it is essential to either use jQuery's referencing mechanism or $("#numberOne")
the JavaScript function.getElementsById("#numberOne")

http://docs.jquery.com/Main_Page
http://docs.jquery.com/Main_Page

In this example the JavaScript attributes do not have a specific type defined. In this case, the compiler
will choose the type string for them. As a result of this, the variable need to be parsed in JavaScript using
parsing functions like . If the attributes get a type declared, the parsing via JavaScript is not parseInt()
needed anymore because the compiler will do this automatically according to the binding information, e.
g. an attribute x of base type string, holding a numerical value, is bound to a integer based attribute. In
this case the function will automatically called within the application.parseInt()

Creating custom JavaScript functions

It is common to create custom utility functions with input parameters for repeated usage. These functions
are not available by default in JavaScript e.g. financial calculations. There are two ways of being able to
implement these custom functions. Either code them in a custom JavaScript file and then import it into
the model or create them within the controller.<<UI>>

Figure: Custom JavaScript Function

The input parameters and do not have any special type definition applied. The value1 value2
parameters are accessed from within the JavaScript code by using the names of the parameters. The
generated code can be found in the <controller name>.custom.js file and looks as follows:

controller.multiply = function(value1, value2) {
 return value1 * value2;
}

Events

In some cases it is essential to work with events. As xUML UI is using jQuery as its main UI library, the
jQuery Event is implemented and can be used. Having event data can be a great help when different
events use the same event handler and it needs to be distinguished between e.g. the event type.
The following event parameters are implemented in the xUML UI:

Property Description

target Element identifier for which the event was triggered for.

data The actual value in case any was passed with the event.

This JavaScript function can be called from within any other custom defined function, but can not be
directly applied as a Call function within a UI element.

type The type of event, e.g. click even from a button element. This is more than useful when
reusing one event handler for many different events

timestamp A timestamp.

	Overview on the Generated Browser Code Elements

