Overview on the Generated Browser Code Elements

Generating a web based user interface from a UML model implementing the MVC pattern means
mapping the pattern to code which the web browser can interpret.

UML GUI to HTML

To understand the generated HTML code it is essential to know which part of the code resembles which
modeled user interface component.

wH <body

Bl <form 1d="HelloWorldPanel” class="ui-widget™>

28] <Eieldset id="GreupBexl" class="wi-widget-centent wi-cerner-all™s

29 <legend>Change Text Example</legend>

el <div class="eZe-Tow">

a1 Hello Horld

az </an

a0 <ALy class="eZe-zpacerld”></diu>

a1 <div class="eZe-Iow'>

as <input nane="TextFieldl” placeholder-Ta text” type="rext” 1d-"TextFisldl™s</imputs
a6 </t

n <div class="eZe-spacerl”>c/div>

g <aLy class-"e2e-row>

e <button id="changeTextButton” class="ui-state-default ui-corner-all™>Change Text</button>
0 <sdiv>

a <div class-"e2e-spacerl"></div>

a </fieldsets

@ </form

asf <form title-"Confirmation” id="textChangeConfirmation” class-"ui-dialog™
as <div class="eze-rou">

E Do you want to change the Cext7</spam

4 <div class-"eZe-separator”></div>

as <yazvs

a2 <AiY class="eZe-spacerll”</div>

50

s

sz <button 1d="noButton” class="ui-state-default ui-cormer-all">NO</button>
5 </div>

54 <div class="e2e-spacerll™></div>

55 </Torm>

6 </body>

57 </htmly

The code in the above screenshot describes the structure and grouping of the Helloworld Ul example
application. It is important to know that depending on the layout type that was chosen, the HTML code
will differ. The above example uses the flow layout. In case of the usage of the grid layout, the
corresponding HTML elements will be nested into table cells.

Line UML Model Element Description
27] B The HelloWorldPanel <<
Panel>> element is
Change Text Example generated to a <form>
HTML tag holding all the
Hella World Ul elements within a
group (Line 27-43). The
atext form attribute id holds the

name which was given to
the UML <<Panel>>
object within MagicDraw.

Change Text
In case the id is not

a unigue name the
compiler will
generate a warning
and will create a
new unique id from
the name given. If
there is no id set,
the compiler will
also create an id.

m® E g

The form-attribute class
holds the name of the
CSS class definition
which describes the look
and feel of the element.
Please refer to the Ul
Widgets chapter for more
detailed information.
Due to the fact that in
most cases a UML
container will hold form
elements, container
elements are translated
to HTML forms.

On this Page:

® UML GUI to HTML
® Extensibility of CSS and

JavaScript
® Extensibility of the
Controller
O Retrieving Data
= Using
jQuery
= Using
Bound
Controller
Variables

© JavaScript
Attribute Types
© Creating custom
JavaScript
functions
" Events

Related Pages:

® Overview on the Used Web
2.0 Components

® Qverview on the Used
Frameworks

® Overview on the Generated
Browser Code Elements

® Debugging Custom
JavaScript Functions

® Optimizing Generated
JavaScript

https://doc.scheer-pas.com/display/BRIDGE/Overview+on+the+Used+Web+2.0+Components
https://doc.scheer-pas.com/display/BRIDGE/Overview+on+the+Used+Web+2.0+Components
https://doc.scheer-pas.com/display/BRIDGE/Overview+on+the+Used+Frameworks
https://doc.scheer-pas.com/display/BRIDGE/Overview+on+the+Used+Frameworks
https://doc.scheer-pas.com/display/BRIDGE/Debugging+Custom+JavaScript+Functions
https://doc.scheer-pas.com/display/BRIDGE/Debugging+Custom+JavaScript+Functions
https://doc.scheer-pas.com/display/BRIDGE/Optimizing+Generated+JavaScript
https://doc.scheer-pas.com/display/BRIDGE/Optimizing+Generated+JavaScript

28-29 | |
Change Text Example

31

Change Text Example
| | | |
Hella World
mE E g
35] |]
atext
= Cig]
39] [
[1: Change Text IEIJ
| = |
44
Confirmation
Do you wantto chanae the text?
% YES | %] MO
46]]
.I%p vou wantto change the text? g .
51-52

%] YES | % NO

The <<GroupBox>> UML
element is generated into
a <fieldset> HTML tag.
The fieldset attribute
name GroupBox1 is a
generic name due to the
fact that the UML
element was not named
when modeled. In case of
customized scripts
needing to access the
fieldset using a specific
name, the UML element
needs to be given a
name according to the
specifications. The class
attribute references the
CSS class definitions
which define the look and
feel of the Group Box.
The HTML tag <legend>
holds the title of the <field
set>. This title is set
within the properties of
the UML element within
MagicDraw.

The Hello World UML <<L
abel>> is translated into

a HTML tag. For
the controller JavaScript
to be able to access this
element and do the text
change the tag
has an id attribute.

The UML element <<Text
Field>> is generated as a
HTML <input> tag. The
attributes name and id
have a generically
generated name. The
default text a text is
translated as placeholder
attribute.

The UML element <<Butt
on>> is generated to a
HTML <button> tag. The
id attribute holds the
defined name changeTex
tButton. The <<Button>>
property Text holds the C
hange Text button label.

The <<Frame>> UML
container used for the
modal dialog is
generated to a <form>
tag. The behaviour as a
modal dialog is steered
by the CSS class ui-
dialog defined within the
<form> tag. The id
attribute is given the
name specified within the
<<Frame>> properties as
well as the dialogs title Co
nfirmation.

see description of lines
28-29

see description of line 39

Extensibility of CSS and JavaScript

The HTML application file hold all references to libraries, frameworks, configuration and style sheets
within the <head> section. Next to the standard libraries which should not be edited, there are files which
can be amended to extend functionality and design of the xXUML Ul application.

Thead>
<meta contents"text/javascript” hrtp-equivs"COntent-Seript-Type ></mete>

<titles</eitles

esheet” type="rex
ype="text/cas"></ link>

min.3s” type"text/JavascTipti></scripts
Libs/jquery/validate/jquery. validate. uin. Js" Cype="text/iavascript”s</script>
e2e.J5" Lype="text/]avascript'></script>

Figuration.Js" CYyDE="TEXT/]aVASCLIDL'></SCIipt>

Xt/ JavasCript”< /seripts
5t/ javascript”>< /soript>
Xt/ JavasCripte /Seripts
Libs/jquery/jquery. history. 5" type="text,javascript"></scripts
11bs/3query/dataTables/nedias]s/] query, dataTables.nin,J3" Cypes=""Lext/Javascript »</scripty
LoWor1dUL 33" type="text/iavascript™></script>
20f] <noscriptr
21 <p>This page requires JavaScript.</p>
2 </noscripty

head

Extensibility of the Controller

The <<UI>> controller can be extended with custom JavaScript functions which enable to enrich the
functionality xUML Ul application. The custom JavaScript functions have full access to <<UI>> controllers
context e.g. accessing defined global variables, other JavaScript functions or even accessing an external
system using AJAX requests. Due to the fact that xUML Ul applications are based on jQuery, all the
features of this powerful library can be used.

e Containment; &, Inheritance| £ Diagrams | <>Model Ext.. | diSearchRe

Containment

EER Y =
E}EI UI «Repasitory s

BB Binding «Repositarys

BB Mavigation «Repositary

- Relations

B[Javascript «1x

+numberCne [1]

+number T [1]

+selectedInde:x [1]

+sumlQueryl) <1 avasoripts

+sumBinding() = 11avascripts

+showselectedIndesx() «Ullavascripks

A JavaScripk -

The JavaScript operation name is defined by assigning the wanted name to a default operation. The
normal class operation will be generated as a JavaScript function by assigning the <<UlJavaScript>>
stereotype.

The JavaScript code itself can be edited either using the specification dialog of the operation element or
by using the JavaScript Editor. The editor is accessed via right-clicking on the operation element and
choosing the JavaScript Editor (Shift-Enter). The JavaScript Editor does support syntax highlighting but
does not support code completion.

¥ E2E JavaScript Editor

Edit JavaScript Script
Edit JavaScript Script

JavaScript

).val()):
o"y.val(l);

inputl = parseInt($(
input2 = parseInt(s(

var prod = this.multiply({inputl, input2);

ductField™).wval (prod);

The actual JavaScript is set within the operations Script property field. The JavaScript function name can
be changed through editing the Name properties field.

The generated JavaScript function will look like this:

control l er. sumJQuery = function() {
alert (' The sumis: '+ (parselnt($("#nunberOne").val ()) +
par sel nt ($("#nunber Two").val ())));

Retrieving Data

There are different ways to get data from the user interface or the JavaScript application (Controller) itself.

Using jQuery

This simple snippet will use jQuery to find the element numberOne and retrieve its value. This snippet
can be used directly within the <<UlJavaScript>> operation without modelling further elements.

var val = $("#nunberOne").val ();

jQuery offers a wide range of functions to handle data within E2E Ul applications. For a detailed
documentation including tutorials and examples on jQuery visit their documentation on http://docs.jquery.
com/Main_Page.

Another way of course is to access the values using standard JavaScript functionality to access the DOM
structure.

var val = docunent. get El enent sByl d(" nunber One");
or
var val = docunent. get El enent sByNane(" nunber One");

The id and name HTML elements attributes share the same unique identifier. The exception to this
are Check Box and Radio Button elements. Their name attribute is used for grouping multiple
elements and it is essential to either use jQuery's referencing mechanism $(" #nunber One") or
the get El ement sBy| d(" #nunber One") JavaScript function.

Using Bound Controller Variables

Custom global variables defined within the <<UI>> controller can of course be bound to user interface
elements. The values are automatically available to the global variables as soon as data is written into
the text fields. The binding is done between the <<UI>> class and the user interface elements.

Ul I}
.......... iy
: cuses {defaultLayout = floating}
.5. ——————— ‘é T T T T Tl+numberQne [1] d
e fU5% lenumberTwo [1] d

+selectedIndex [1]

oo emltiply(value, value2)
+setMultiplyResult])

))))) +showEventObject(event : UIEvent)
....................... +showSelectedindex()

: : : : : +sumBindinaf)

+sumJdQuery()

To be able to access these global variables the pointer this is used:

var sum = parselnt(this.nurberOne)+ parsel nt(this. nurber Two) ;

JavaScript Attribute Types

http://docs.jquery.com/Main_Page
http://docs.jquery.com/Main_Page

In this example the JavaScript attributes do not have a specific type defined. In this case, the compiler
will choose the type string for them. As a result of this, the variable need to be parsed in JavaScript using
parsing functions like par sel nt () . If the attributes get a type declared, the parsing via JavaScript is not
needed anymore because the compiler will do this automatically according to the binding information, e.
g. an attribute x of base type string, holding a numerical value, is bound to a integer based attribute. In
this case the par sel nt () function will automatically called within the application.

Creating custom JavaScript functions

It is common to create custom utility functions with input parameters for repeated usage. These functions
are not available by default in JavaScript e.g. financial calculations. There are two ways of being able to
implement these custom functions. Either code them in a custom JavaScript file and then import it into
the model or create them within the <<UI>> controller.

Figure: Custom JavaScript Function

[ﬂgContainment & Inheritance| £ Diagrams | <= Model Ext.. | &dSearch Re..

Containment o B X

el 1 =]

EP@ Javascript «Uls

----- O +nurmberCne [1]
----- O +nurmberTwo [1]
----- O +selectedIndex [1]

(=5 CI- +multiply
e (3 waluel

e (3 valuez -
4 *

3% Zoom | [B] Documentation Properties | E E2E Model Compiler
Properties (LS

Element | Language properties

24 B E"i Expert % -
=

Mame multiply
reb.lrn valuel * value2;
Is Abstract [false

To Do

The input parameters valuel and value2 do not have any special type definition applied. The
parameters are accessed from within the JavaScript code by using the names of the parameters. The
generated code can be found in the <controller name>.custom.js file and looks as follows:

controller.multiply = function(val uel, value2) {
return valuel * val ue2;

}

This JavaScript function can be called from within any other custom defined function, but can not be
directly applied as a Call function within a Ul element.

Events
In some cases it is essential to work with events. As xXUML Ul is using jQuery as its main Ul library, the
jQuery Event is implemented and can be used. Having event data can be a great help when different

events use the same event handler and it needs to be distinguished between e.g. the event type.
The following event parameters are implemented in the xXUML Ul:

Property Description
target Element identifier for which the event was triggered for.

data The actual value in case any was passed with the event.

type The type of event, e.g. click even from a button element. This is more than useful when
reusing one event handler for many different events

timestamp = A timestamp.

	Overview on the Generated Browser Code Elements

