
Overview on the UI Design Capabilities
Next to being able to use xUML UI to create rather complex layouts, the styling of the look and feel is the
next step after the layout is set. The following chapters will introduce themes and possibilities to
implement corporate designs and standards in a fast way.

Built-in Themes
The Builder offers a variety of predefined themes which can be chosen of. Theme is designed pas-blue
to integrate best into the Scheer PAS environment.
The following themes are an excerpt to give an impression of what is available.

Theme Look Theme Name

Runtime 2021.3 UI Theme pas-blue

UI Theme blitzer

UI Theme cupertino

On this Page:

Built-in Themes
Creating a Custom Style

ThemeRoller
The Theme
Package
Theme API

Adding customized
Themes, CSS and
JavaScript files

Related Pages:

Overview on the Used Web
2.0 Components
Overview on the Used
Frameworks
Overview on the Generated
Browser Code Elements
Debugging Custom
JavaScript Functions
Optimizing Generated
JavaScript

Related Documentation:

JQuery Documentation:
Theming

https://doc.scheer-pas.com/display/BRIDGE/Overview+on+the+Used+Web+2.0+Components
https://doc.scheer-pas.com/display/BRIDGE/Overview+on+the+Used+Web+2.0+Components
https://doc.scheer-pas.com/display/BRIDGE/Overview+on+the+Used+Frameworks
https://doc.scheer-pas.com/display/BRIDGE/Overview+on+the+Used+Frameworks
https://doc.scheer-pas.com/display/BRIDGE/Overview+on+the+Generated+Browser+Code+Elements
https://doc.scheer-pas.com/display/BRIDGE/Overview+on+the+Generated+Browser+Code+Elements
https://doc.scheer-pas.com/display/BRIDGE/Debugging+Custom+JavaScript+Functions
https://doc.scheer-pas.com/display/BRIDGE/Debugging+Custom+JavaScript+Functions
https://doc.scheer-pas.com/display/BRIDGE/Optimizing+Generated+JavaScript
https://doc.scheer-pas.com/display/BRIDGE/Optimizing+Generated+JavaScript
https://api.jqueryui.com/category/theming/
https://api.jqueryui.com/category/theming/

UI Theme sunny

UI Theme ui darkness

UI Theme dot luv

UI Theme ui lightness

UI Theme eggplant

UI Theme exite bike

UI Theme humanity

UI Theme south street

Creating a Custom Style
Next to the predefined and built-in themes it is often needed to create the own look and feel to match
with corporate style guides. There are two ways of amending themes: directly edit an existing theme's
CSS classes or use the ThemeRoller offered online by jQuery.

ThemeRoller

ThemeRoller is an online tool not only to browse the different default jQuery themes but also to visually
build a theme. The ThemeRoller online tool is accessible via .http://jqueryui.com/themeroller

To create a unique and customized jQuery UI Theme, use the component navigation () Roll Your Own
located on the left of the screen as shown in the figure above. The parameters are grouped into topics e.
g. or . By unfolding each group, the parameters become available for editing.Content Header/Toolbar

All the changes that are made to the parameters in the editing tree will be shown in real time within the
content area of ThemeRoller. In the figure above, the Tabs border was changed to red. When the
necessary amendments are done, a simple click on the button will proceed to the Download Theme
download section of ThemeRoller.

http://jqueryui.com/themeroller

The Download Section of ThemeRoller allows to select each theme section separately to optimize the
size of the theme e.g. the effect shake is not needed for user interface elements and does not need to be
included. After de/selecting the components contents press the button to start the download Download
of the custom theme file (jquery-ui-1.8.1.custom.zip). For the download make sure the is Custom Theme
selected as well as the jQuery . The optional Advanced Theme Settings can be used to version 1.8.1
change the theme folder name or define a scope on which the theme should have an effect on.

The Theme Package

The downloaded theme archive contains all the CSS, images and JavaScript files as well as a
development package containing examples and documentation.

Within the folder structure there are the following files:

/custom style/css/custom-theme/jquery-ui-1.8.1.custom.css
This file holds all css classes defining the theme and which can be amended. Some classes
also have image references to icon sets and other images which should be placed within the ima

 sub-directory. Just changing the look and feel only requires doing amendments within this ges
file and the images. For a description of the Theme css class API refer to the next chapter.
/custom styles/js/jquery-1.4.2.min.js
The jQuery library. The content of this file is compressed and optimized JavaScript code and is i

.gnored

Theme API

It is essential to know, that the settings within ThemeRoller are not saved and are lost after closing
the browser window.

jQuery offers next to the pre-defined themes and the ability to use ThemeRoller as a visual tool to create
custom themes an API to its jQuery UI framework which enables more technically oriented designers to
implement their own designs in pure CSS and JavaScript to e.g. add additional missing features not
available in jQuery.
The jQuery UI framework API is straight forward and compact. The following list gives an overview
description of the CSS classes which can be overridden. Knowledge of CSS is required.

CSS class name Description

Layout Helpers

.ui-helper-hidden Applies display: none to elements.

.ui-helper-hidden-accessible Applies accessible hiding to elements (via abs positioning off the
page)

.ui-helper-reset A basic style reset for UI elements. Resets things such as padding,
margins, text-decoration, list-style, etc.

.ui-helper-clearfix Applies float wrapping properties to parent elements

.ui-helper-zfix Applies iframe "fix" css to iframe elements when needed in overlays.

Widget Containers

.ui-widget Class to be applied on outer container of all widgets. Applies font
family and font size to widget. Also applies same family and 1em font
size to child form elements specifically, to combat inheritance issues
in Win browsers.

.ui-widget-header Class to be applied to header containers. Applies header container
styles to an element and its child text, links, and icons.

.ui-widget-content Class to be applied to content containers. Applies content container
styles to an element and its child text, links, and icons. (can be
applied to parent or sibling of header)

Interaction States

.ui-state-default Class to be applied to clickable button-like elements. Applies
"clickable default" container styles to an element and its child text,
links, and icons.

.ui-state-hover Class to be applied on mouseover to clickable button-like elements.
Applies "clickable hover" container styles to an element and its child
text, links, and icons.

.ui-state-focus Class to be applied on keyboard focus to clickable button-like
elements. Applies "clickable hover" container styles to an element
and its child text, links, and icons.

.ui-state-active Class to be applied on mousedown to clickable button-like elements.
Applies "clickable active" container styles to an element and its child
text, links, and icons.

Interaction Cues

.ui-state-highlight Class to be applied to highlighted or selected elements. Applies
"highlight" container styles to an element and its child text, links, and
icons.

.ui-state-error Class to be applied to error messaging container elements. Applies
"error" container styles to an element and its child text, links, and
icons.

.ui-state-error-text An additional class that applies just the error text color without
background. Can be used on form labels for instance. Also applies
error icon color to child icons.

.ui-state-disabled Applies a dimmed opacity to disabled UI elements. Meant to be
added in addition to an already-styled element.

.ui-priority-primary Class to be applied to a priority-1 button in situations where button
hierarchy is needed. Applies bold text.

.ui-priority-secondary Class to be applied to a priority-2 button in situations where button
hierarchy is needed. Applies normal weight text and slight
transparency to element.

Icons

.ui-icon Base class to be applied to an icon element. Sets dimensions to 16px
square block, hides inner text, sets background image to "content"
state sprite image.

After declaring a ".ui-icon" class, you can follow up with a second
class describing the type of icon you'd like. Icon classes generally
follow a syntax of .ui-icon-{icon type}-{icon sub description}-{direction}.

For example, a single triangle icon pointing to the right looks like this: .
ui-icon-triangle-1-e

Buttons

.btn-accent Class to be applied to grey-out a button (theme).pas-blue

.btn-warn Class to be applied to style the button in a warning-like fashion
(theme).pas-blue

Corner Radius helpers

.ui-corner-tl Applies corner-radius to top left corner of element.

.ui-corner-tr Applies corner-radius to top right corner of element.

.ui-corner-bl Applies corner-radius to bottom left corner of element.

.ui-corner-br Applies corner-radius to bottom right corner of element.

.ui-corner-top Applies corner-radius to both top corners of element.

.ui-corner-bottom Applies corner-radius to both bottom corners of element.

.ui-corner-right Applies corner-radius to both right corners of element.

.ui-corner-left Applies corner-radius to both left corners of element.

.ui-corner-all Applies corner-radius to all 4 corners of element.

Overlay & Shadow

.ui-widget-overlay Applies 100% wxh dimensions to an overlay screen, along with
background color/texture, and screen opacity.

.ui-widget-shadow Class to be applied to overlay widget shadow elements. Applies
background color/texture, custom corner radius, opacity, top/left
offsets and shadow "thickness". Thickness is applied via padding to
all sides of a shadow that is set to match the dimensions of the
overlay element. Offsets are applied via top and left margins (can be
positive or negative).

For more detailed information refer to the .JQuery documentation

Adding customized Themes, CSS and JavaScript
files

ui-icon class will be given a different sprite background image
depending on its parent container. For example, a ui-icon
element within a ui-state-default container will get colored
according to the ui-state-default's icon color

https://api.jqueryui.com/category/theming/

Customized jQuery Themes, CSS and the JavaScript files need to be imported using the Resource
Importer. The resources will be added according to the type that is selected within the Resource
Importers wizard.

Example File (Builder project Advanced Modeling/UI):

<your example path>\Advanced Modeling\UI\uml\uiCustomCSS.xml

https://doc.scheer-pas.com/download/attachments/2286600/UI.zip?version=4&modificationDate=1627663380000&api=v2

	Overview on the UI Design Capabilities

