
Base Layouts
Layout of Orthogonal States

In some cases it can be necessary to create a more complex layout consisting of a combination of
different user interface areas. This is usually seen on portal sites where there are different areas like a
news ticker a navigation and a content part.

xUML UI offers the possibility to create a complex layout structure by using orthogonal states having
different templates assigned to the . The layout is defined in regions which can be defined <<UIStates>>
in the .<<UIRegion>>

On this Page:

Layout of Orthogonal States
Grid, Float and Fixed
Layout

Flow Layout
Grid Layout
Fixed Layout

CSS Container Elements
and Nested DIV
Grouping UI Elements in
the UIPackage

Example Files (Builder project Advanced Modeling/UI):

<your example path>\Advanced Modeling\UI\uml\uiLayout.xml

https://doc.scheer-pas.com/download/attachments/2286600/UI.zip?version=4&modificationDate=1627663380000&api=v2

Grid, Float and Fixed Layout
xUML UI offers three layout options, the grid layout, the flow layout and the fixed layout. All of these
layout types have their weakness and strengths.

The layout is defined on the user interface elements of type container having the additional stereotype <<

. This would be the (), (), () and ().UIContainer>> Panel Frame Group Box Tabbed Pane

Which layout is chosen depends largely on the type of design that will be implemented and the target
audience. The following table lists some pro's and con's which both layout managers have:

Flow Layout

With Flow Layout mode, there are no precise positions for controls specified. There are no top or left
properties, nor are there any references to x, y, or z coordinates. Controls are placed relative to other
controls. It can be specified that a text box can be placed next to a label, or underneath a label, but the
browser will make the final decision on the precise positioning based on the space available. Tables and
panels are often used to ensure sets of related controls are grouped together. They are frequently used
in complex combinations, such as nesting a table inside the cell of another table. Common sets of
controls are often converted into user controls so they can be reused on many pages within a project.

Pro Contra

Compatible with every Web browser and
many hand held devices.

Content may look decent, but you can not generally
ensure it will look great.

Content is dynamically positioned so it should
always look decent.
Easy to layout using external style sheets.

Hard to predict how the content will look to all your
users.

Grid Layout

A grid layout simply uses a table to achieve its results, and most browsers will support this. There is no
absolute positioning using CSS pixel values implemented. For this reason, most web based user
interface use the flow layout in combination with tables to fixate the design as needed.

Pro Contra

Simple concept based
table layouting.

Limited compatibility with hand held devices in some cases, due to the
inability to flow the layout. Designs must be specifically designed for small
screen resolutions.

All content will display
exactly where it was
specified.

-

Fixed Layout

The fixed layout translates the actual position of the design modeled in Magic Draw. The positioning of
the elements is done with CSS and therefore uses the CSS coordinate system from top left corner or an
element.

Pro Contra

The layout precisely controllable and flexible in changing
positioning

Older browsers will not support this
features

Keeps the HTML/text ratio at a low level, thus decreasing
load time

CSS Container Elements and Nested DIV

When designing pages purely with CSS, a container for page elements is needed. This is done by using
<div> tags. Choosing this approach allows full control of the layout and look and feel leaving HTML table
grids away. To be able to create more complex layouts the <div> tags need to be nested. xUML UI
supports this way of designing, by generating container tags for each container element (Frame, Panel,
ScrollPane etc.) which is modeled in the Magic Draw Interface Modeling Diagram.

Example File (Builder project Advanced Modeling/UI):

<your example path>\Advanced Modeling\UI\uml\uiDivElements.xml

https://doc.scheer-pas.com/download/attachments/2286600/UI.zip?version=4&modificationDate=1627663380000&api=v2

There are two container elements generated by the compiler, where the top level container element is
always a <form> tag and all following container elements, nested or not, are <div> tags.
The generated code will clearly shows how the tags are nested in each other as well as the top level
container <form> element. To be able to set a CSS class name to an element container the container in
Magic Draw needs the stereotype assigned. Then it is possible to set a CSS Class in <<UIContainer>>
the tagged values section of the element.

<body id="e2e_main">
 <form id="UITemplate_mainPanel" class="e2e-content ui-widget">
 <div class="e2e-row">
 <div id="UITemplate_headerPanel" class="headerPanel">
 <div class="e2e-row">
 <div id="UITemplate_logoPanel" class="logoPanel">
 <img id="UITemplate_e2elogo" class="logo" src="
e2e_logo.png">
 </div>
 <div id="UITemplate_textPanel" class="textPanel">
 E2E Technologies<
/span>
 </div>
 </div>
 <div class="e2e-spacer10"></div>
 <div class="e2e-row">
 <div id="UITemplate_taglinePanel" class="taglinePanel">
 <img id="UITemplate_tagline" class="tagline" src="
e2e_tagline.png">
 </div>
 <div class="e2e-separator"></div>
 </div>
 <div class="e2e-spacer10"></div>
 </div>
 </div>
 <div class="e2e-spacer10"></div>
 <div class="e2e-row">
 <div id="UITemplate_textblockPanel" class="textblockPanel">
 Textblock
 </div>
 </div>
 <div class="e2e-spacer10"></div>
 </form>
 </body>

Grouping UI Elements in the UIPackage
The is a way to group certain UI elements together and define a layout type for each <<UIPackage>>
package. This enable to combine flow and table layouts to be more flexible with the design. The <<UIPac

 is meant to replace the stereotype on Packages within the UI .kage>> <<Repository>> <<Repository>>

Figure: <<UIPackage>> Usage

The has the following parameters which can be set:<<UIPackage>>

Parameter Description

Name The name of the <<UIPackage>>

CSS Class A custom CSS class definition styling or influencing the behavior of the UI package
element or its children.

Layout The layout which should be used for the elements within the . This can <<UIPackage>>
be float or grid.

Group This defines a name for the elements grouped by the e.g. radio or <<UIPackage>>
checkbox groups.

Vertical
Group

When layouting the UI elements they are normally organized in row and columns. The
model compiler will put all UI elements that are in a horizontal line into a row and per
row each UI element in its own column. However, sometimes two elements (e.g. radio
buttons) shall be put in the same column to group them graphically. This can be
achieved giving them the same Vertical Group number.

Further, next to the ability to combine different layout types, the is also needed to group <<UIPackage>>
Radio Buttons to . See the corresponding details within the UI Widgets chapter.Radio Button Groups

	Base Layouts

