
Server Side Pagination

The table widget allows - next to the standard client side pagination - also for server side pagination.
When to use which version depends on the system design. But in generally, server side processing is
ideal if:

large amounts of data are handled
faster initial page load is required
the service should be resilient to concurrent changes

To enable server side pagination, you need to setup the frontend / UI part and the server side
processing. The latter is not part of this UI documentation but a working example will give some insight
on what is needed. The frontend part consists of configuring the table widget and binding as well as
extending the service call's parameters.

Configuring the Table Widget
The Widget is configured on the dependency.<<UITableBinding>>

Within the tagged value section of the Specification Window, enable the tagged value Server Side
Processing.

So far, this is all that has to be done in the widget configuration area.

On this Page:

Configuring the Table
Widget
Extending the Table Data
Service
TableFilter Classes

TableFilterRequest
Class
TableFilterRespon
se Class

The Usage of Filter Classes
Explicit Pagination
Callback Service
Download the Filtered Data

Related Pages:

Open/Close Row Details

Example Files (Builder project Advanced Modeling/UI):

<your example path>\Advanced Modeling\UI\uml\uiServerSideTablePagination.xml

https://doc.scheer-pas.com/display/BRIDGE/Open+Close+Row+Details
https://doc.scheer-pas.com/download/attachments/2286600/UI.zip?version=4&modificationDate=1627663380000&api=v2

Extending the Table Data Service
To be able to process data page sets on the server using e.g. SQL queries, additional information of the
current table widget page set needs to be added to the request. For the model this means adding an
additional class to the request and response class used by the service. These additional classes are Tabl

 and , both a standard class within the eFilterRequest TableFilterResponse Base Components
repository.

The data service call request and response classes need to be extended using a generalization so that
the table filter classes attributes get inherited as the following figure shows:

TableFilter Classes
The following tables give details on how to use the attributes of the TableFilter classes.

TableFilterRequest Class

Attribute
name

Description Values

displayLen
gth

Contains the number of records to display.

displayStart Contains the index number of the first record to display.

isRegex Specify whether the search field contains a regular expression. tr
ue

Search field is a
regular
expression.

fa
lse

Search field
contains a
search term only.

search Contains the global search field data. This attribute can be used as a
search criteria within a SQL where clause.

sortColumn
[0..*]

Contains an array of column numbers to be sorted after.

If the user clicks to sort on one column, this array contains one
element only.
If the user clicks more than one column holding the key, all Shift
clicked columns are sorted hierarchically and are listed in this array
in clicked order.

sortColumn
[0..*]

Contains an array of sort orders corresponding to the array.sortColumn a
sc

Sort ascending.

d
e
sc

Sort descending.

TableFilterResponse Class

Attribute
name

Description

totalRecords Contains the total number of records, before filtering (i.e. the total number of records in
the table).

totalDisplay
Records

Contains the total number of records after the filtering has been applied (not just the
number of records being returned in this result set).

The Usage of Filter Classes
As described previously, the TableFilter classes hold information which is essential for the server side
processing. The following activity diagram is an example on how to use the attributes to retrieve and
send back the correct paging data.

The activity above shows how the parameters of the classes are used to query a database TableFilter
and receiving the data which the widget dictates to retrieve. In the example, the query is build
dynamically to respect the and parameters.search order

Action Description

Build
SQL
Query

This is where the SQL statement is build. For the pagination, it is important to identify the
position of the current and next data set (page) to retrieve. In the SQL statement, we use
the keyword for reading pagewise:LIMIT

LIMIT getCustomers.displayStart.convertToString(), getCustomers.
displayLength.getCustomers.displayStart.convertToString()

As it is possible to define a search key, the clause is set by the criteria ORDER BY search
delivered by the service request input. In the above example, the search criteria is set in
case it exists.

Read
Custom
er DB
with
Paginati
on

This is where the SQLite database is queried. The result will be a data set which
corresponds to the page size of the table widget. The result of the query will be the array of

.customers

Count
All
Custom
ers in
DB

The output needs to know the that the entire getCustomerResponse totalRecords
database table holds. The result of the SQLite query gives back the count value.

Create
Respon
se

As a last step the the response gets populated with the data needed for the table widget to
display the data set (page). The actual data () is assigned to the customers customerElem

 of the response. This data will be displayed in the widget as it is defined by the tables ent
binding. The holds the count of the actual data set result and is totalDisplayRecords
needed for the widget to do calculations for further paging requests as well as the third
parameter .totalRecords

The example handles the paging using a SQLite database, and shows how the logic should be used in
general. Other systems will allow similar handling of paging mechanisms or even need some more
complex logic.

Explicit Pagination Callback Service
By default, the will also be called when paginating through the last service providing the table data
table. This is feasible for simple cases - however, often it makes more sense to explicitly define a service
to be called for pagination events.

In the following example the service is called to initially build the table, but for pagination getCustomers
events the service is invoked. Both services must follow the same implementation paginationCallback
rules as described above. The only difference is that the pagination service is called by a <<UITransition>>
triggered by an event. In contrast to other UI transitions it must start and end at the state. paginate same
Additionally, calling scripts or defining timeouts is not allowed on such a transition.

Download the Filtered Data
To provide a link to download not only the table page but the filtered table data, you need to define a dra

 that contains JavaScript to calculate the download link. Every time the table is drawn anew (e.wCallback
g. due to filter changes) the download link will be updated.

The callback resides in the UI navigation:

Add a script like

var settings = $(table).dataTable().fnSettings();

var query = "?displayStart=" + settings._iDisplayStart + "&displayLength="
+ settings._iDisplayLength;
query += "&search=" + settings.oPreviousSearch.sSearch;

for(var i = 0; i < settings.aaSorting.length; i++){
 query += "&sortColumn=" + settings.aaSorting[i][0];
 query += "&sortDirection=" + settings.aaSorting[i][1];
}

$("#ID::linkExport").attr("href", "../../data/download/customer_list.csv"
+ query);

that builds the download link and adds the table parameters.

The link points to an operations that allows to download the displayed data:

The download operation reads the table parameters from the HTTP parameters and calls the getCustom
 operation accordingly:ers

After having read the data, the file is composed and returned.

	Server Side Pagination

