
Manually Providing the REST Interface

It may be that the import of the YAML file fails or the REST service provides no description file at all. In
this case, you can draw the REST interface definitions manually. On you can find an REST Import Rules
overview on how OpenAPI entities are mapped to UML elements.

REST Alias
Add a REST alias to your component diagram. How to manually create an alias is described on Backend

. Apply stereotype and provide the necessary tagged Components > Creating an Alias <<RESTAlias>>
values as described on .REST Adapter Reference > <<RESTAlias>>

API Classes
Collect all parameter and type information from the REST API documentation, draw the necessary
classes and their relations. If you have an XML Schema (XSD) of the classes, you can . import the XSD
The E2E REST Importer would import the type information to a package and <your API name>/Types
we recommend to do the same.

Figure: JIRA Create Issue Classes

You do not need to depict the complete interface - it is sufficient to draw the needed classes for the
resources you want to access and the properties you want to deal with.

If the REST service provides additional error information in his response, create an error class, too, and
apply stereotype .<<RESTError>>

API Interface
Collect all needed information on the REST resources you want to access from the documentation of the
REST service.

On this Page:

REST Alias
API Classes
API Interface

Steps to Create a
REST Interface

Related Pages:

REST Import Rules
Importing OpenAPI Files
(REST)

This page explains the in Bridge context. If you were looking for the same REST Adapter
information regarding the , refer to in the Designer guide.PAS Designer REST Adapter

Example File (Builder project Add-ons/REST):

<your example path>\Add-ons\REST\uml\accessJIRAviaRestAdapter.xml

https://doc.scheer-pas.com/display/BRIDGE/REST+Import+Rules
https://doc.scheer-pas.com/display/BRIDGE/Backend+Components#BackendComponents-CreatinganAlias
https://doc.scheer-pas.com/display/BRIDGE/Backend+Components#BackendComponents-CreatinganAlias
https://doc.scheer-pas.com/display/BRIDGE/REST+Adapter+Reference#RESTAdapterReference-RESTAlias
https://doc.scheer-pas.com/display/BRIDGE/Importing+WSDL+or+XSD
https://doc.scheer-pas.com/display/BRIDGE/REST+Import+Rules
https://doc.scheer-pas.com/display/BRIDGE/Importing+OpenAPI+Files+REST
https://doc.scheer-pas.com/display/BRIDGE/Importing+OpenAPI+Files+REST
https://doc.scheer-pas.com/display/DESIGNER
https://doc.scheer-pas.com/display/DESIGNER/REST+Adapter
https://doc.scheer-pas.com/download/attachments/2286600/REST.zip?version=5&modificationDate=1653990627000&api=v2

1.

2.

Defining a REST interface to access a REST service with the REST Adapter resembles defining the
interface of a REST service itself. You can find more information on that on Defining a REST Service

. You need to create all service elements that are listed as mandatory in the table below.Interface
A REST interface consists of:

Element Stereotype Mandatory Tagged Values Reference
Link

a REST interface UML
package

<<RESTInterface>> <<RESTInterface>>

REST resource classes <<RESTResource>> <<RESTResource>>

REST operations <<REST>> <<REST>>

REST parameters <<RESTParameter>> () <<RESTParameter>>

REST error class(es) <<RESTError>> <<RESTError>>

REST response definitions <<RESTResponseDefinition
>>

<<RESTResponseDefinition>>

REST interface documentation and tags as described on are not Defining a REST Service Interface
relevant in this case and you can leave them out.

Steps to Create a REST Interface

Create a package <your REST interface> under package <your API name> and assign
stereotype .<<RESTInterface>>

In this package, create REST resources (stereotype) and their operations (<<RESTResource>>
) and parameters () according to the <<REST>> <<RESTParameter>> REST service

.documentation

https://doc.scheer-pas.com/display/BRIDGE/Defining+a+REST+Service+Interface
https://doc.scheer-pas.com/display/BRIDGE/Defining+a+REST+Service+Interface
https://doc.scheer-pas.com/display/BRIDGE/REST+Adapter+Reference#RESTAdapterReference-RESTInterface
https://doc.scheer-pas.com/display/BRIDGE/REST+Adapter+Reference#RESTAdapterReference-RESTResource
https://doc.scheer-pas.com/display/BRIDGE/REST+Adapter+Reference#RESTAdapterReference-REST
https://doc.scheer-pas.com/display/BRIDGE/REST+Adapter+Reference#RESTAdapterReference-RESTParameter
https://doc.scheer-pas.com/display/BRIDGE/REST+Adapter+Reference#RESTAdapterReference-RESTError
https://doc.scheer-pas.com/display/BRIDGE/REST+Adapter+Reference#RESTAdapterReference-RESTResponseDefinition
https://doc.scheer-pas.com/display/BRIDGE/Defining+a+REST+Service+Interface
https://doc.scheer-pas.com/display/BRIDGE/Defining+a+REST+Service+Interface
https://doc.scheer-pas.com/display/BRIDGE/Defining+a+REST+Service+Interface

2.

3.

If the REST operation path contains fix segments (like e.g.) that should not be URL date=
encoded by the E2E xUML Runtime before accessing the resource, set tagged value isVerbati

 to . Refer to for more details on this.mPath true REST Adapter Reference
If a REST parameter has an ugly name that would have to be escaped, use tagged value extern

. Refer to for more details.alName REST Adapter Reference
If the REST service provides additional error information in his response, you need to create
use dependencies (stereotype) from the defined REST <<RESTResponseDefinition>>
operations to the error class being used in this case.

https://doc.scheer-pas.com/display/BRIDGE/REST+Adapter+Reference#RESTAdapterReference-REST
https://doc.scheer-pas.com/display/BRIDGE/REST+Adapter+Reference#RESTAdapterReference-RESTParameter

	Manually Providing the REST Interface

