
Mapping with a Mapping Handler

Up to now, we just mapped simple attributes using built-in operations. If it is necessary to execute self-
defined operations, for example because of more complex mapping rules or to do a look-up for a code-
value translation, you can use operations defined on a class. This class <<E2EMappingHandler>>
intermediates the mapping between a source and a target class:

The operation in the example above is used to set some setDefaultValues <<E2EMappingHandler>>
default values in class . To reference the target attribute you have to use the keyword target Output1
here.
The allowed keywords are:

self: refers to the current handler. valid only if the operation is not static.Note:
source: refers to the source object
target: refers to the target object

If action is invoked in an activity diagram for the above defined mapping handler, all <<Mapping>>
operations on are applied to the input objects whereas all input and output parameter doMappings
names must be found on the source respectively the target class. The order in which the mapping
operations are executed depends on the order in which they are specified on the class. In the
specification dialog of the mapping handler class this order can be rearranged if necessary.

On this Page:

Mapping Guards
Iteration and Filtering

Related Pages:

Simple Mapping of
Attributes
Simple Mapping of Classes
More Complex Mappings
Mapping with a Mapping
Handler
Constraints

The usage of the mapping handler is deprecated. Please use mapping dependencies and the
:context mapper instead

Example File (Builder projectAdvanced Modeling/Mapping):

<your example path>\Advanced Modeling\Mapping\uml\mappingContext.xml
<your example path>\Advanced Modeling\ \uml\mappingScriptUsageDMapping
ependencies.xml

Example File (Builder project Advanced Modeling/Mapping):

Deprecated <your example path>\Advanced Modeling\ \uml\mappingHandleMapping
r.xml

https://doc.scheer-pas.com/display/BRIDGE/Simple+Mapping+of+Attributes
https://doc.scheer-pas.com/display/BRIDGE/Simple+Mapping+of+Attributes
https://doc.scheer-pas.com/display/BRIDGE/Simple+Mapping+of+Classes
https://doc.scheer-pas.com/display/BRIDGE/More+Complex+Mappings
https://doc.scheer-pas.com/display/BRIDGE/Constraints
https://doc.scheer-pas.com/display/BRIDGE/More+Complex+Mappings
https://doc.scheer-pas.com/display/BRIDGE/More+Complex+Mappings
https://doc.scheer-pas.com/download/attachments/2286600/Mapping.zip?version=1&modificationDate=1538480479000&api=v2
https://doc.scheer-pas.com/download/attachments/2286600/Mapping.zip?version=1&modificationDate=1538480479000&api=v2

If all mapping operations are static, no instance of must be given to the doMappings <<Mapping>>
action. However, if the mapping operations are non-static, a object of type is required as doMappings
input of the action, i.e.:<<Mapping>>

Since the mapping handler is handled like any other UML object, you can define member variables to
hold contextual information when executing the mapping. Alternatively, if convenient, you can also define
abstract or overridable operations that are resolved at runtime.

Mapping Guards
Up to now each operation has been applied unconditionally. If an operation shall be applied only if certain
conditions apply use the tagged value on to specify the mappingGuard <<E2EMappingGuard>>
condition.

Figure: Conditional Mapping Using Guards

The operation in the example above is only invoked if the condition zipCode setLocalCode between
4000 4099 is true.and

In many cases it makes no sense to apply an operation to optional input values if they are NULL.
Therefore, if an operation has input parameters only that are optional at the source class, the operation is
applied only if at least one of the input values is not NULL. This is technically implemented, by generating
an implicit guard. This behavior can be overridden by setting the tagged value callOnlyIfParametersExist
on to false (default is true). Beware, the implicit guards are applied only if the <<E2EMappingGuard>>
operation has the stereotype .<<E2EMappingGuard>>

Iteration and Filtering

In many situations we have to map not only single attributes but arrays. The following figure shows an <<
 containing the operation . This operation is E2EMappingHandler>> CompanyHandler mappingOrder

applied to all elements of the array because its stereotype is inputOrders <<E2EMappingIteration>>
having the tagged value = "inputOrders".iterateOver

Figure: Iterative Mapping As Defined in Class Diagrams

Example File (Builder projectAdvanced Modeling/Mapping):

Deprecated <your example path>\Advanced Modeling\ \uml\mappingIteratioMapping
n.xml

https://doc.scheer-pas.com/download/attachments/2286600/Mapping.zip?version=1&modificationDate=1538480479000&api=v2

When iterating over arrays it is frequently helpful to filter the array before starting the iteration. Thus, you
can use the tagged value on to select a subset of the array. mappingFilter <<E2EMappingIteration>>
Within the filter expression you can use the following keywords to access values:

self: refers to the current handler.

Note: Valid only if the operation is not static.

source: refers to the source object
element: refers the current iteration element

For instance, the example above selects only array elements where the order type is equal to 'Buy'.
Each iterated element is put into the input parameter that has the stereotype inputOrder <<E2EMappingI

.terationElement>>

All output elements generated while iterating are appended to the array . This is defined by outputOrders
setting the stereotype on parameter .<<E2EMappingIterationOutput>> outputOrder

In the implementation of the mapping iteration the mapping specified between mappingOrder InputOrder
and is invoked.OutputOrder

Additionally, in the example above we cumulate for every iteration the amount into the attribute cumOrde
 of the object. The attributes of the current handler can be referenced rAmount <<E2EMappingHandler>>

by .self

The aggregated amount can received from the after the <<E2EMappingHandler>> <<E2EMappingIteratio
 was invoked.n>>

	Mapping with a Mapping Handler

