
Calling Class Operations
Operations can be defined on classes and they are implemented by an activity. That activity needs to be
assigned to the operation.
Operations can be called by a or within .call operation action script

Call Operation Action
A class operation can be called by a call operation action in two ways:

The class operation is static.
The operation can be called without instantiating the class.
The class operation is not static.
A local instance of the class has to be created and the operations is called on that instance.

Static Call Operation Action

This example shows how to call a static class operation by call operation action.

Define a class with
an operation.

Make this
operation static by
ticking on Is Static
the operation's
specification.

On this Page:

Call Operation Action
Static Call
Operation Action
Referenced Call
Operation Action

Call Operations by Action
Script

Static Class
Operations Within
Action Script
Referenced Class
Operation Within
Action Script

Class
Instance
as a
Local
Object
Class
Instance
Created
Outside
Action
Script

Calling Base Type
Operations

Related Pages:

Using the Suggestion
Features of the Action
Script Editor
Local Variables

Example File (Builder project Basic Modeling/ClassOperation):

<your example path>\Basic Modeling\ \uml\callClassOperations.xmlClassOperation

https://doc.scheer-pas.com/display/BRIDGE/Using+the+Suggestion+Features+of+the+Action+Script+Editor
https://doc.scheer-pas.com/display/BRIDGE/Using+the+Suggestion+Features+of+the+Action+Script+Editor
https://doc.scheer-pas.com/display/BRIDGE/Using+the+Suggestion+Features+of+the+Action+Script+Editor
https://doc.scheer-pas.com/display/BRIDGE/Local+Variables
https://doc.scheer-pas.com/download/attachments/2286600/ClassOperation.zip?version=3&modificationDate=1635951564000&api=v2

This class
operation can
easily be used in
any activity
diagram. Easy
way is to drag and
drop the operation
from the
containment tree
directly into your
activity diagram.A
call operation
action linking to
the selected class
operation will be
created
automatically -
together with all
needed pins for
you to connect to
the related objects
via object flows.

All static class operations can be called by call operation action without needing to create an instance of
the class.

Referenced Call Operation Action

To use data on the
class, call a class
operation by
referencing an
instance of this
class by a target
pin. In this case,
you do not need to
define the class
operation as static.

In the activity
diagram, create an
instance of the
class by action
script. This central
buffer object has
to be connected to
a target pin on the
call operation
action by an object
flow.

To create this
target pin choose
a new input pin
from the object
short menu bar.

Now you can draw
the object flow
from the central
buffer of your
class to the target
pin.

Important to know: With static operations, no attributes of the class itself can be accessed within a
class operation. Any context does not exist because no instance of the class is referenced.self

These are the two easy ways to directly call a class operation within your activity diagram.

Call Operations by Action Script

You can easily use self defined technical functions directly from your action script by implementing them
as a class operation. Calling these class operations in action script is possible in two different ways:

Either call a static class operation or ...
call a class operation of a referenced class object.

In both cases, the class containing the operation you want to call has to be made available to action
script usage via a dependency.<<use>>
The effect of the dependency relates to the package structure of the Builder project:<<use>>

Service operations implemented
below cannot callOperationsPort
access classes defined in package

, because they are not Classes
part of the same branch in the
containment tree.

If a superior class (like callOperati
 in our example) is having onsPort

a dependency to a <<use>>
another class implementing a 1
class operation (like ExchangeRat

 in our example), all eStatic
subordinated objects of that 2
class (in our callOperationsPort
example) can instantiate the
dependent class and use their
operations via that <<use>>
dependency.

The example below shows how to make class and operation ExchangeRateStatic getXchangeRateStat
 available for all other subordinated action scripts of the ic <<E2ESOAPPortType>> callOperationsPort

by drawing a dependency from the port type class to the implementing class.<<use>>

Example File (Builder project Basic Modeling/ClassOperation):

<your example path>\Basic Modeling\ \uml\callClassOperations.xmlClassOperation

https://doc.scheer-pas.com/download/attachments/2286600/ClassOperation.zip?version=3&modificationDate=1635951564000&api=v2

Give the dependency a name, like in our example. Via this name the <<use>> exchangeRateStatic
class and its operations can be accessed within action script.

Static Class Operations Within Action Script

Static class operations have to be made available to action script via a dependency as <<use>>
mentioned .above

Type in the name of the dependency or select it out of the selection offered by the Action Script <<use>>
Editor. With a colon you can select the available operations on the referenced class. Any parameters are
given within the brackets. So finally an operation call should look like:

 exchangeRateStatic:getXchangeRateStatic("buy", fromCurr);

Be aware that all the referenced parameters are available as parameters or central buffers associated to
the action script or available as .local variables

Referenced Class Operation Within Action Script

To create an object of a class within action script, this class has to be made available to action script via
a dependency as mentioned .<<use>> above

If the operation is not static, an instance of the class has to be created before calling the operation. This
can be done in two ways:

by creating a local object within the action script
by creating an instance of the class outside the action script and then referencing it via an object
flow

If you want to call a static operations of the current class, you can use keyword to identify the self
operation. For example:

self:myStaticOperation()

https://doc.scheer-pas.com/display/BRIDGE/Local+Variables

In fact, when no dependency has been created yet, MagicDraw will suggested to create one for <<use>>
you:

Upon creating
e.g. the local
object, simply
start typing
the name of
the class and
press Ctrl +

 to Space
force the
suggestion list.

Select the
class you
want to use
an operation
of and ...

MagicDraw
will suggest to
create a <<us

dependene>>
cy
automatically.
The name of
this
dependency
will be <name
of the related
class in
lower-
case>Referen

. You can ce
change this
name in the
containment
tree later on,
if you like.

You can find
the new <<use

 >>
dependency
in a package

 in Relations
the package
your activity
resides in.

Class Instance as a Local Object

Figure: Call reference class operation on local object

First, a local instance of the class has to be created:

create local xr using exchangeRates;

Syntax: <objectName> <nameOfUseDependency> create local using

The local object now is available within the action script and also shown in the suggestion list of available
objects.
To call an operation the statement looks like:

<name of the referenced object>.<operation name>(Parameter, anotherParameter);

set response = xr.getXchangeRate("sell", toCurr);

Class Instance Created Outside Action Script

In case an instance of the object is created outside the action script, it can be referenced by an object
flow into the action script. Then the operation is available the same way like referenced by a local object.

Figure: Call referenced class operation on input object

Beside calling a class operation it is also possible to use class operations in context of , or apply reduce s
. For additional information see example .elect each from callClassOperation

Calling Base Type Operations
All of the above also refers to operations. The xUML are implemented to the Base Type Base Types
Builder/xUML Runtime as classes with related operations.

In package in the Base Types
Builder, you can find the base
types and their related operations.

Package Base Components
contains some more type related, s

 operations that can be used tatic
likewise.

You can add operations that are defined on base types or on base type utilities to an activity diagram like
any other class operation.

In most cases, however, you will use such operations in .action script

Exceptions

For technical reasons, this does not work for

macros
operations that can have a variable count of parameters like the : concat() Operation
concat(string1:String, string2:String, string3:String, ...)
operations where return type determines the behavior, like e.g. the xmlToClass()
Operation

https://doc.scheer-pas.com/display/BRIDGE/EAL
https://doc.scheer-pas.com/display/BRIDGE/Macros
https://doc.scheer-pas.com/display/BRIDGE/concat
https://doc.scheer-pas.com/display/BRIDGE/xmlToClass+Strings
https://doc.scheer-pas.com/display/BRIDGE/xmlToClass+Strings

	Calling Class Operations

