Calling Class Operations

Operations can be defined on classes and they are implemented by an activity. That activity needs to be
assigned to the operation. On this Page:
Operations can be called by a call operation or within action script.

® Call Operation Action

Example File (Builder project Basic Modeling/ClassOperation): o Static Call
Operation Action
<your example path>\Basic Modeling\ClassOperation\uml\callClassOperations.xml o Referenced Call

Operation Action
® Call Operations by Action

l \L ' Script
O Static Class

Operations Within
Action Script

© Referenced Class
Operation Within

Call Operation Action Action Script
" Class
. . L Instance
A class operation can be called by a call operation action in two ways: asa
Lo) Local
®* The class operation is static. Object
The operation can be called without instantiating the class. = Class
® The class operation is not static. Instance
A local instance of the class has to be created and the operations is called on that instance. Created
Outside
. . . Action
Static Call Operation Action Script
® Calling Base Type
This example shows how to call a static class operation by call operation action. Operations
package Class Diagram Classes [|£] call Operation Actmn]J Define a class with
an operation.
Related Pages:
CurrencyExchangeStatic
+huyRate : Float
+fromCurrency : String = EUR
Jresuiammount - Float ® Using the Suggestion
+taCurrency : String = USD Features of the Action
+calculateAmmaountStaticl ammount : Flaat, result: Flaat, framCurr : String, toCurr : String SCI’ipt Editor
® Local Variables
Properties g 0 o Make this
operation static by
Element ticking Is Static on
. g the operation's
ai B B Standard w specification.
B Operation
Marne calculate AmmountStatic
Owner] CurrencyExchangeStatic. ..
Applied Stereotype
Visibility public
Type
Method) calculateAmmountStaticl ar
Is Abstract [] false
Is Static true

To Do

https://doc.scheer-pas.com/display/BRIDGE/Using+the+Suggestion+Features+of+the+Action+Script+Editor
https://doc.scheer-pas.com/display/BRIDGE/Using+the+Suggestion+Features+of+the+Action+Script+Editor
https://doc.scheer-pas.com/display/BRIDGE/Using+the+Suggestion+Features+of+the+Action+Script+Editor
https://doc.scheer-pas.com/display/BRIDGE/Local+Variables
https://doc.scheer-pas.com/download/attachments/2286600/ClassOperation.zip?version=3&modificationDate=1635951564000&api=v2

(actviy Actviy Diagram callDependentciass0) callDependantciass0 7

[Any static ciass operation
can dirzctly be called by
using call operation action

Calla Static Class Operation

~ " ammount: Fioat |
ammount: Float

fromCurr : String

flomGurr : String result: Float

result : Float

This class
operation can
easily be used in
any activity
diagram. Easy
way is to drag and
drop the operation
from the
containment tree
directly into your
activity diagram.A
call operation
action linking to
the selected class
operation will be
created
automatically -
together with all
needed pins for
you to connect to
the related objects
via object flows.

All static class operations can be called by call operation action without needing to create an instance of

the class.

Important to know: With static operations, no attributes of the class itself can be accessed within a
class operation. Any sel f context does not exist because no instance of the class is referenced.

Referenced Call Operation Action

package Class Diagram Classes| call Operation Action with targetPin]J

CurrencyExchange

+huyRate : Float
+fromCurrency : Siring
+resultAmmount : Float
+5ellRate | Float
+HoCurrency : String

+ealculateAmmount! ammount : Float)

(activity Activity Diagram callDe pendentClassOperation!) callDependeniClass Operation ||

«AdtionSeripts
Create currExchange

fromCurr : String

toCurr: Siring |

set flomCurrency = flomGurr: GurTEXGhange ; CurrencyExchange
- st toCurrency = toCurr;
ammount: Foat |——————>|-¢t cumexchange.ammount = ammount)

Set Result
Script = "set resuit = curExchange.resuAmmount;”)

!

:Float

[cActionScripts
e

e e """.'JEI:""f'
calculateAmmount q}

(CurrencyExchange:)
.- : -

Input Pin

¥ - . Y
-U'-f: PP OIS T s 11y =y | - PETET 13 NPT - 3

To use data on the
class, call a class
operation by
referencing an
instance of this
class by a target
pin. In this case,
you do not need to
define the class
operation as static.

In the activity
diagram, create an
instance of the
class by action
script. This central
buffer object has
to be connected to
a target pin on the
call operation
action by an object
flow.

To create this
target pin choose
a new input pin
from the object
short menu bar.

Now you can draw
the object flow
from the central
buffer of your
class to the target
pin.

These are the two easy ways to directly call a class operation within your activity diagram.

Call Operations by Action Script

Example File (Builder project Basic Modeling/ClassOperation):

<your example path>\Basic Modeling\ClassOperation\uml\callClassOperations.xml

You can easily use self defined technical functions directly from your action script by implementing them
as a class operation. Calling these class operations in action script is possible in two different ways:

® Either call a static class operation or ...
® call a class operation of a referenced class object.

In both cases, the class containing the operation you want to call has to be made available to action
script usage via a <<use>> dependency.
The effect of the <<use>> dependency relates to the package structure of the Builder project:

Containment g B X Service operations implemented
below callOperationsPort cannot

B 7 Q Lk - access classes defined in package

= ?, Data Classes, because they are not

part of the same branch in the

"E ﬁllases containment tree.

B Base Types [E2E Bridge Base.xml] If a superior class (like callOperati
5 Component View onsPort in our example) is having
a <<use>> dependency to a
another class 1 implementing a

ﬁl Process Tradng [E2E Process Tradng. xmi] class operation (like ExchangeRat
BB Services eStatic in our example), all
EEI calloperationsService subordinated objects 2 of that
P . class (callOperationsPort in our
i = EI callOperationsPortType example) can instantiate the
) EIE' Classes dependent class and use their
- "t~ ExchangeRateStatic operations via that <<use>>

callOperationsFort dependency.
- 3 +calPersistantOperation 1(ammount :
& +writeXchangeRates(xchangeRates :
& +calExchangeRatestaticl fromCurr @ E
O +calExchangeRateDynamic(fromCurr
- & +calDependentClassOperation{ fromC
2 +calDependentClassOperationStatic] f
& +callExch _)aF‘.ateDynamicZ{ fromCur
O +applyOperation{ exchangesList : Basq
- @ +applyOperationTwo(exchangesList :
i) applyOperation(exchangesList @ Array
e} applyOperationTwo(resultExchangesl
-t callDependentClassOperation(result :
-t callDependentClassOperationStatic(re
-i) callExchangeRateDynamic(result : Flog
-t callExchangeRateDynamic2{ ammount
-8, callExchangeRateStatic(result : Float,
-2 callPersistantOperation 1(resultCurren
[writeXchangeRates(xchangeRates : B
BB Classes
H-Ep xchangerates [xcha

The example below shows how to make class ExchangeRateStatic and operation getXchangeRateStat
ic available for all other subordinated action scripts of the <<E2ESOAPPortType>> callOperationsPort
by drawing a <<use>> dependency from the port type class to the implementing class.

https://doc.scheer-pas.com/download/attachments/2286600/ClassOperation.zip?version=3&modificationDate=1635951564000&api=v2

package Class Diagram Classes | use Static Class Operations]|

==<EZESOAPPoType==
callOperationsPort

exchangeRateStatic

|
=sugg=>

ExchangeRateStatic

+CurrencyBuy : String
+CurrencySell - String
+¥changeBuy : Float
+¥changeSell : Float

+getdchangeRateStatic{ buySell : String, currency : Btting, rate : Float)

Give the <<use>> dependency a name, like exchangeRateStatic in our example. Via this name the
class and its operations can be accessed within action script.

Static Class Operations Within Action Script

Static class operations have to be made available to action script via a <<use>> dependency as
mentioned above.

(activity Activity Diagram] ji
Dependent Operations must be static or created as
local object first
/Al operations must have 3 <<use=> dependency []
fromthe operationsPort
T
|
|
. «AdtionScripts
fromCurr ; String -
[{script ="
toCurr ; String - buyRate £ buy”, fromCurr). > result: Float
local seliRate = exchangeRateStatic getXchangeRateStatic('selr’, toCurr),
e local chiAmmount = ammount / buyRate;
set resuit = chiAmmount * seliRate:"}
®

Type in the name of the <<use>> dependency or select it out of the selection offered by the Action Script
Editor. With a colon you can select the available operations on the referenced class. Any parameters are
given within the brackets. So finally an operation call should look like:

exchangeRat eSt ati c: get XchangeRat eStati c("buy", fronCurr);

Be aware that all the referenced parameters are available as parameters or central buffers associated to
the action script or available as local variables.

If you want to call a static operations of the current class, you can use keyword self to identify the
operation. For example:

sel f:nyStati cOperation()

Referenced Class Operation Within Action Script

To create an object of a class within action script, this class has to be made available to action script via
a <<use>> dependency as mentioned above.

If the operation is not static, an instance of the class has to be created before calling the operation. This
can be done in two ways:

® by creating a local object within the action script
® by creating an instance of the class outside the action script and then referencing it via an object
flow

https://doc.scheer-pas.com/display/BRIDGE/Local+Variables

In fact, when no <<use>> dependency has been created yet, MagicDraw will suggested to create one for

you:

E2E Action Script Editor

File Edit View Code Global Ops

Get Rates @

Action Seript
create local xr using Exchangel "~

lexchangeRateStatic

[ExchangeRate [Services::Classes]

v
I 131 Il

Find: |© @ [Ovathcase [JRepeats ‘
E2E Action Script Editor x

File Edit View Code Global Ops

Get Rates @
Action Script
create local xr using Exchange ~
Create Usage ?
Create usage exchangeRateRererence?
oK Cancel
v
I 131 I
Find: | © @ 2] OMatchCase [|Repeats
(o[eoncd |
Containment 5 o
BwQ & -
B Data
EHEo Aliases

- Overview

BB Services

~[Bf Base Components [E2E Bridge Base. xml]
-[Bg Base Types [E2E Bridge Base. xml]

B3 Component View

~[Bg Process Tracing [E2E Process Tradng.xmi]

=8 E| allOperatlonsSerwce

les s p,p-wmmmﬂ&WWWMwm

mllPermsEntOperahon 1{ ammount : Base Ty
+writeXchangeRates(xchangeRates : Services
+calExchangeRateStatic{ fromCurr : Base Typ
+callExchangeRateDynamic(fromCurr : Base T
+callDependentClassOperation(fromCurr @ Bz
+callDependentClassOperationStatic(fromCurr

Class Instance as a Local Object

Figure: Call reference class operation on local object

Upon creating
e.g. the local
object, simply
start typing
the name of
the class and
press Ctrl +
Space to
force the
suggestion list.

Select the
class you
want to use
an operation
of and ...

MagicDraw
will suggest to
create a <<us
e>>dependen
cy
automatically.
The name of
this
dependency
will be <name
of the related
classin
lower-
case>Referen
ce. You can
change this
name in the
containment
tree later on,
if you like.

You can find
the new <<use
>>
dependency

in a package
Relations in
the package
your activity
resides in.

(activity Activity Diagram Dynamic| [aleDynarm:U

Dependent Operations must be static or
created as local object first.

All classes of used operalions must have a
<<use=> dependency fromthe
operationsPort class.

aActionScripts

T: String Get Rates
[{script ="
toCurr: String ‘create local xr using exchangeRales, P

local buyRate = xr.getXchangeRate("buy", fromCurr);
local sellRate = xr.getXchangeRate("sell, toCur);
local chiAmmount = ammount / buyRate;

set resuit = chfAmmount * sellRate;"}

First, a local instance of the class has to be created:

create | ocal xr using exchangeRates;

Syntax: create | ocal <objectNanme> using <nameOf UseDependency>

The local object now is available within the action script and also shown in the suggestion list of available
objects.

To call an operation the statement looks like:

<narme of the referenced object>. <operati on nane>(Paraneter, anotherParaneter);

set response = xr.get XchangeRate("sell", toCurr);

Class Instance Created Outside Action Script

In case an instance of the object is created outside the action script, it can be referenced by an object
flow into the action script. Then the operation is available the same way like referenced by a local object.

Figure: Call referenced class operation on input object

(‘activity Activity Diagram callExchangeRateDynamic2 | [caHExcnangeRamDy'nammzy

xActionScripts
Create Class
script = "create xr;"}

«centralBuffers
xr:ExchangeRate

ActionScripts
Get Rates

T String

{script="

local buyRate = xr.getXchangeRate(buy", fromCurr); result: Float

local sellRate = xr.getXchangeRate("sell", toGu); -

local chfAmmount = ammount / buyRate;

set result = chfAmmeunt * sellRate;"}
— T

* | Dependent Operations must be
- | static or created as local object
first.

All classes of used operations
. |must have a <<use>>
- | dependency from the
operationsPort class.

®

Beside calling a class operation it is also possible to use class operations in context of apply, reduce or s
elect each from. For additional information see example callClassOperation.

Calling Base Type Operations

All of the above also refers to Base Type operations. The XUML Base Types are implemented to the

Builder/xUML Runtime as classes with related operations.

Contaimment @ B K| In package Base Types in the

B Q 3

E- W Data A
B Aliases
Bp Base Components [E2E Bridge Base. xml]
E}ﬁ Base Types [E2E Bridge Base.xml]
B Any
-- & +cast{ any : Base Types::Any) : Base Types::Any
+classToXML() : Base Types::Blob
+cassToXML(options : Base Components::Basic Be
+classToXMLFragment() : Base Types::Blob
+copy() : Base Types::Any
+exists() : Base Types::Boolean
+getMetaAtiributes() : Base Types::Array
+staticTypeOf() : Base Types::5tring
+typeOf() : Base Types::String
+mapEqualMames(anyComplexTypel : Base Types
+mapEqualMamesIfExists{ anyComplexType1 : Base
+dassTolSON(options : Base Components::Add Or
+classToXMLFragment{ options : Base Components

2OQ0Q0Q0QR00

i) +classToExtendedISOMN(format : E2E Bridge Profile
BB array
Lo 0 I =10 i
£ >

B wQ o -
21 Data ~
--b Aliases

E-Bg Base Components [E2E Bridge Base, xmi]
E-Eg Add Ons

B3 advanced Behavior

+]-F3 Basic Architecture

E|E| Basic Behavior

BBy CompositeContext

El-Ba DateTime
B Error
B3 Map
£
£
E

1B MIME

1B Select

B ServiceContext

BBy String

BB Utilities

; +concat(string : Base Types::String, string
+normalizeSpaces(string : Base Types::Stri
+substring(string : Base Types::5tring, sta
+stringlength(string : Base Types::String)
+indString(string : Base Types::String, str
+indPattern(string : Base Types::String, n
+indPatterns{ string : Base Types::5tring,

+tnl rwerl etrinn + Racs Tunea: Sirinn) » Bz

< >

Y00QA0000

Builder, you can find the base
types and their related operations.

Package Base Components
contains some more type related, s
tatic operations that can be used
likewise.

You can add operations that are defined on base types or on base type utilities to an activity diagram like

any other class operation.

activity Activity Diagram writeXchangeRates [@ writeXchangeRates U

classToXML
(Any)

return : Blob

wcentralBuffers
data : Blob
«FileSystemAdapters p

write File
{action = write, . .
alias = bankRates}

G} Exceptions

For technical reasons, this does not work for

® macros
® operations that can have a variable count of parameters like the concat() Operation:
concat(string1:String, string2:String, string3:String, ...)

operations where return type determines the behavior, like e.g. the xmIToClass()
Operation

In most cases, however, you will use such operations in action script.

https://doc.scheer-pas.com/display/BRIDGE/EAL
https://doc.scheer-pas.com/display/BRIDGE/Macros
https://doc.scheer-pas.com/display/BRIDGE/concat
https://doc.scheer-pas.com/display/BRIDGE/xmlToClass+Strings
https://doc.scheer-pas.com/display/BRIDGE/xmlToClass+Strings

	Calling Class Operations

