
Encoding of SOAP Operations
SOAP uses an XML format to marshal data that is transported between software applications. SOAP was
planned to be used for legacy systems and modern object-oriented systems as well. Consequently,
SOAP offers more than one encoding method to convert data from a software object into XML and vice
versa (see the).page of W3C

There are two ways, in which it maps high level data types like arrays, integers, floats and so on to a
serialized XML format: (also called Section 5 encoding) and .SOAP encoding Literal encoding
Literal encoding means that the body contents conform to a specific XML Schema. SOAP encoding uses
a set of rules based on the XML Schema data types to encode the data, but the message does not
conform to a particular schema.
In addition to the SOAP encoding styles, messages can be of two styles: RPC (Remote Procedure Call)

 or . See for a and more details about all style Document style SOAP Encoding Styles tabular overview
encoding styles.
The following encodings are commonly used and supported by the Bridge:

SOAP Remote Procedure Call (RPC) encoding
SOAP encoding
RPC style messages

SOAP document-style encoding, which is also known as message-style or document-literal
encoding.

literal encoding
document style messages

Implementing Document-style Encoding with the
E2E Bridge

The contains two SOAP operations.DocumentStyleEncodingPort

Figure: Hello World Example SOAP Service

From the modeling point of view, the whole difference between RPC and document style operations is
given by choosing the stereotype on a port type operation:<<SOAPDocumentOperation>>

Figure: Defining Stereotype for Document-style Encoding

On this Page:

Implementing Document-
style Encoding with the
E2E Bridge
Differences between
Document-style and RPC
Style on the E2E Bridge
Effect of Flag
wsdlPerService on the
Encoding Styles

wsdlPerService =
true
wsdlPerService =
false
Defining the XML
Namespace

The Bridge supports SOAP RPC encoding as default. This default is used when no stereotype is set
at the port type operation.

Example File (Builder project Basic Modeling/Frontend):

<your example path>\Basic Modeling\Frontend\uml\documentStyleEncoding.xml

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://doc.scheer-pas.com/display/BRIDGE/SOAP+Encoding+Styles
https://doc.scheer-pas.com/download/attachments/2286600/Frontend.zip?version=3&modificationDate=1587971363000&api=v2

The stereotype needs to be set on a port type operation, if it is required <<SOAPDocumentOperation>>
by the connecting SOAP client. In a SOAP document-style call, the SOAP stack sends an entire XML
document to the Bridge. The message can contain any sort of XML data that is appropriate to the
deployed web service.
The parameter names of the port type operation will correspond to XSD <<SOAPDocumentOperation>>
element names. The parameters require the accordant object flow states in the implementing activity
diagram (mostly, the required classes are generated by importing the XSD file with the E2E Builder).
Document-style encoded operations mostly have zero or one input and output parameters. The
parameter names correspond to the root element of the input respectively output message that is
transferred in the SOAP body.

Differences between Document-style and RPC
Style on the E2E Bridge
The request/response stream of RPC and document style operation calls differs considerably. The
following table shows examples of two such requests, both requests transporting the same information.

Document Style / Literal
Encoding Request

RPC Style / SOAP Encoding Request

 <env:Body>
 <in1 myKey="Hello
World!"></in1>
 </env:Body>
</env:Envelope>

<env:Body>
 <ns3:createSimpleObjectInOut>
 <in1 xsi:type="ns2:Input">
 <myKey xsi:type="xsd:string">Hello
World!</myKey></in1>
 </ns3:createSimpleObjectInOut>
 </env:Body></env:Envelope>

In the left-hand-side example, the SOAP envelope body contains plain (= literal) XML. Each child
element of the SOAP body corresponds to an operation parameter serialized to plain XML. On the right
hand side, the first and only child of the SOAP body element is the SOAP operation containing the input
parameters serialized according to the SOAP encoding rules. The main differences between the two
formats are as follows:

Literal XML messages do not contain explicit type information making it more compact than
SOAP encoded requests.
The operation is explicitly given for RPC style calls. For document style requests, the SOAP
operation must be derived by the SOAP action.

By default, the SOAP action is given by the operation name (prefixed with to make it to an URI), but urn:
it can be overridden using the tagged value . This SOAP action is used as UML message soapAction
name instead of the operation name when displaying sequence diagrams for document style requests in
the E2E Model Debugger (see sequence diagram depicted beneath). Additionally, if sequence diagrams
depict document style/literal encoding requests, the input and output messages are not rendered as UML
objects but are shown in a separate text window (see the following picture below).

Figure: SOAP Action in E2E Model Debugger

This stereotype can also be set on backend port type operations when accessing an external Web
Service.

Clicking on input parameter of operation will display the message in in1 urn:createSimpleObjectInOut
a separate pane.

Figure: Document Style Encoded Message

Effect of Flag wsdlPerService on the Encoding
Styles
Flag in the E2E composite controls the generation of WSDLs at compile time.wsdlPerService

If true (default=false), each xUML service gets its own WSDL file. Additionally, all XML Schema elements
and types having the same namespace are put into one schema file. These schema files are imported
into the WSDLs to be shared among them. In this case it is also possible to mix RPC/soap-encoded
services with Document/literal services.

wsdlPerService = true

RPC Style Encoding Document-style Encoding

Definiti
ons of
Types

Types are defined
directly in the WSDL
file.
The WSDL only
contains types, that are
referenced in the
service interface.

Types are defined directly in the WSDL file, but in not
XSD files that are imported to the WSDL.
The Compiler generates one XSD file per namespace.
The generated XSD files contain all imported types.
That means, that imported XSDs are passed through
as they are.
If importing XSDs with equal namespaces (e.g. noName

) and if consuming services import multiple space.xsd
WSDLs, it could be that types get overwritten.

Definiti
ons of
Servic
es

The Compiler
generates one WSDL
per service.
Each service WSDL
gets its own URL in the
E2E Bridge.

The Compiler generates one WSDL per service.
Each service WSDL gets its own URL in the E2E
Bridge.

Best
Practice

Use this configuration for:

test services, because
operation signatures
can directly be depicted
basic services, e.g.
Bridge-internal
communication

Decide to use namespaces, or not, but do not mix
these two different approaches in the same project.
Use this configuration for services that are visible
externally, because this approach is very common.

1.
2.
3.

wsdlPerService = false

RPC Style Encoding / Document-style Encoding

Definitions of
Types Types are defined directly in the WSDL file.

The WSDL only contains types, that are referenced in the service interface.

Definitions of
Services The Compiler generates one WSDL file, that contains all service definitions.

The Compiler generates multiple URLs for the one WSDL file to fulfill the URL
convention ().<service url>?wsdl

Best Practice
Use this configuration, if only used types should be visible in the interface.
Apart from that: avoid this configuration.

Defining the XML Namespace

The Compiler uses namespaces in the following order:

Namespace defined on the class.
Namespace defined on the owning package (going up until the top of the hierarchy).
No namespace.

It is recommended to define the XML Namespace on the package, sub namespaces are then generated
automatically. But it is also possible to set the namespace in each sub package or even on classes.

To define a
namespace on
packages with
stereotype <<XML

, use Package>>
tagged value xmlN

.amespace

Tagged value xml
 can Namespace

also be used on
classes with
stereotype XML.

	Encoding of SOAP Operations

