
Actions
Actions are used to describe activities applied to objects or the environment. They may contain so-called
action scripts, or can be stereotyped signaling a special kind of an action, like for instance the stereotype

> that is used to access a database. All stereotyped actions are implemented as add-<<SQLAdapter>
ons. This modular architecture makes it simple to enhance the Bridge UML profile, because new adapter
modules add additional stereotypes and tagged-values can be added in a simple way.

Action Scripts
Actions can hold action scripts. Action scripts execute actions following the Action Semantics for the UML

defined in [7]. Action scripts can be used in the script section of actions or in guard
expressions of decision transitions:

The Server implements parts of the Action Semantics for the UML in its E2E Action Language (EAL).
This language is described in .xUML Action Language
Action scripts execute actions on objects. However, if you want to integrate systems and platforms
having action semantics different to the Action Semantics for the UML (databases, legacy systems,
operating systems, and so on), it is desirable to model these actions as well in UML actions. This can be
done using adapters (see below).

Add-ons
While action scripts execute actions on objects it is frequently necessary to perform actions in systems
not directly modeled in UML using languages native to these systems. For example, querying and
updating relational databases is best done using SQL statements. Executing batch programs or system
utilities is often done most naturally using means of the operating system. To describe such actions
working on the environment we use action scripts having a stereotype. In this context, the environment is
called E2E backend because it is logically situated behind the Bridge that offers Services for clients
before it – i.e. in the E2E frontend. Using the MDA® terminology, stereotype actions implement platform
dependent behavior. This behavior is not only dependent on the platform the Bridge is running on but
also on the platforms, the Bridge is accessing.

However, all these actions consume and create objects like actions defined using an Action Language.

In order to access a backend system, we still use an action with an action script. The difference lies in
the fact that you must type the action state with a certain stereotype, e.g. . The action <<SQLAdapter>>
script will contain an SQL statement or the name of a stored procedure. If you wish to use a <<SOAPServ

, you will not have an action script, but tagged values ("call" and "alias") which are references to the ice>>
called service.

Refer to section for more information on the available adapters and their features.xUML Service Adapters

Each adapter has at least an tagged value. This tagged value is an UML artifact referring to a alias
dependency in the deployment diagram. This dependency points to an object (e.g. a database, Web
Service, file, etc.) that holds all physical configuration information for the adapter. Thus we separate the
logical use of an adapter from its deployment configuration – for instance on which machine, port listens
to a given database.

The tagged values of other add-ons than adapters depend on the usage, that is, there is no common
meaning. Examples are timer or cryptology add-ons.

On this Page:

Action Scripts
Add-ons

Related Pages:

xUML Service Adapters

Each add-on communicating with external systems is called adapter.

https://doc.scheer-pas.com/display/BRIDGE/EAL
https://doc.scheer-pas.com/display/BRIDGE/Adapters
https://doc.scheer-pas.com/display/BRIDGE/Adapters

Each add-on requires a set of input parameters. Either these parameters are given as input variables or
they are defined directly in the model. In the first approach, the input parameters are calculated
dynamically. The second approach gives the parameters as static model information. For example, the
SQL Adapter can have an input parameter holding the SQL statement, or the SQL statement can be sql
given as an action script of the action. Generally, each adapter has one input <<SQLAdapter>>
parameter that defines the message sent to the target system. If this parameter is defined statically in the
model, it is put into the action script field. An example of this would be the SQL template (SQL Adapter),
system commands (System Adapter), post message (URL Adapter), email message (SMTP Adapter)
and so on. All input parameters that define the connection to the target system are given via information
in the deployment diagram. The link between the adapter and the component diagram is given by the alias
tagged value. All input parameters that do not fall into the above categories can be statically given as
tagged values. For example, the SMTP adapter has tagged values to define the , and TO CC BCC
header fields.

Connection
parameter to
the target
system

Message or content that will be sent to the target system Additional
parameter
and link
between
Component
Diagram
and
Adapter

Static Component
diagram on the
service as tagged
values (e.g. port,
protocol, charset,
user, path, method,
alias)

Action script of an adapter defined in an action Tagged Values
in the action (e.
g. alias, call)

Dyn
amic

Input out of data item or file controlled by arguments (e.g. key,
value, server, port, domainName, sender, recipients, content,
headerParameters, command, inputCount, outputCount, input,
output, requestName, requestMessage, threaded, timeout,
firstOccurrence, repeatInterval, occurrences, requestMessage,
url, method, response)

	Actions

