
mapAttributes macro

Syntax anInputObject.mapAttributes({anotherInputObject})

Semantics Maps one or more input objects to an output objects. For each attribute that
should be mapped, an attribute mapping needs to be defined in a class diagram.

The attribute mapping macro can be used, if you need to map attributes from one
object to another object. The attribute mappings are defined directly in a class
diagram by drawing dependencies between the attributes of the involved classes.
It is possible to create complex rules for the attribute mapping by defining the
tagged value on target attributes of the output class.mappingRule

Instead of using the attribute mapping macro, you could also use several set
statements to reach the same goal. However, it is easier to use the attribute
mapping macro, as it reduces the scripting effort. Furthermore, you keep the
attribute mappings maintainable, because they are not hidden in the action script,
but are well documented in the class diagram.

Substitutables anInputObject, anotherInputOb
ject

Can be any object having attributes of
any type.

Examples Attributes of object input1 and input2, for which attribute mappings have been
defined in a class diagram, are mapped to attributes of object output.

set output = input1.mapAttributes(input2);

UML Example
The following example shows some simple attribute mappings. Attributes of one or more input objects
are mapped to the attributes of an output object. The attribute mappings are defined in a class diagram.
In the activity diagram, the input objects have to be defined as input object flow states of the action state
that uses the attribute mapping macro. The output object is defined as output object flow state of the
same action state.
In the following class diagram, the attribute mappings are defined through dependencies between the
class attributes.

Figure: Class Diagram with Attribute Mappings

On this Page:

UML Example
Attribute Mapping
Rules
Example

Related Pages:

Data Mapping

This macro is . Please use the adapter instead. For details see the deprecated <<Mapping>>
chapter .Data Mapping

The way the mapping is done with the mapping macro described in this
chapter is deprecated. Refer to section for a description of Data Mapping
simple and complex mappings.

Example File (Builder projectAdvanced Modeling/Mapping):

<your example path>\Advanced Modeling\Mapping\uml\mappingHandler.xml
<your example path>\Advanced Modeling\Mapping\uml\mappingIteration.xml
<your example path>\Advanced Modeling\Mapping\uml\mappingSimple.xml

https://doc.scheer-pas.com/display/BRIDGE/Data+Mapping
https://doc.scheer-pas.com/display/BRIDGE/Data+Mapping
https://doc.scheer-pas.com/display/BRIDGE/Data+Mapping
https://doc.scheer-pas.com/download/attachments/2286600/Mapping.zip?version=1&modificationDate=1538480479000&api=v2

It is possible to map one input attribute to several output attributes. In the example above, Input2.
is mapped to and . address Output1.address3 Output2.fullAddress

If there are more than one dependencies drawn to one single target attribute, the Model Compiler will
generate an error, unless a mapping rule for both source attributes is defined. For instance, see target
attribute of class .fullAddress Output1
In the example below, some simple attribute mappings are shown.

Figure: Simple Attribute Mapping Operations

When the Model Compiler comes across a call to the mapAttributes macro, it will determine the source
and destination classes (in the first line of the action script these are the classes and). Input1 Output1
The Model Compiler will then search for the class diagram, which contains the attribute mapping
definitions for the involved classes. The Bridge also allows you to map attributes of several input and
output objects in one action state. For each output object, exactly one call to the mapAttributes macro
needs to be defined in the action script.

The output object takes the attributes of the input object according the defined output1 input1
attribute mapping in the class diagram (see action script statement set output1 = input1.

).mapAttributes();
The output object takes the attributes of both input objects and , so both output2 input1 input2
objects needs be defined as parameters in the mapping statement (see action script statement set

).output2 = input1.mapAttributes(input2);

For large mappings, it would also be possible to spread the mappings across several class diagrams.
The Model Compiler will find the mappings no matter where they are placed.

Attribute Mapping Rules

In the class diagram in figure above, two mapping rules are Class Diagram with Attribute Mappings
defined on the attributes and of class . Mapping rules are fullAddress fullAddress2 Output1
defined via the tagged value directly on the target attribute. Complex mapping rules can mappingRule
be applied with this mechanism. You may map from more than one input attribute and process the values
before assigning the result to the target attribute.

https://doc.scheer-pas.com/download/attachments/2287279/ClassDiagramWithAttributeMappings.png?version=1&modificationDate=1343893730000&api=v2

For instance, the mapping rule defined in the tagged concat('Street: ', s2, ' City: ', c2)
value of the attribute defines that the target attribute of the output object mappingRule fullAddress2
is assigned a concatenated string composed of two literals ("Street: " and "City: ") and two mapped input
attributes. You need to use the name of the dependencies as parameter of the concat operation to
reference the correct attributes. In this example, the dependencies and are taken as parameters. s2 c2
Verify the class diagram to determine, which attributes are mapped by these dependencies.

Example

Suppose the following example that corresponds to the example above:

Input

Object.Attribute Value

input1.id 4104

input1.city Oberwil

input1.street Hauptstrasse 3

input1.secondAddress.
city2

Basel

input1.secondAddress.
street2

Lautengartenstras
se 12

input2.id 4052

input2.address Neue Gasse 5

Output

Object.Attribute Value

output1.ID 4104

output1.
fullAddress

Oberwil :
Hauptstrasse 3

output2.ID 4104

output2.
fullAddress

Neue Gasse 5

output3.ID 4104

Note, that the value of attribute was assigned according its mapping rule output1.fullAddress
(compare class diagram in figure).Class Diagram with Attribute Mappings

It is not possible to link the action specification and the class diagram directly. However, you can
place links inside notes in UML diagrams. For a better overview, we recommend that you place a
note close to the action state, which has a link that points to the class diagram containing the
attribute mappings.

The above examples showed attribute mappings in a standalone context. This makes little sense in
real world applications. Of course, attribute mappings can be used at any time and any place in the
flow of activities. An example of this would be to map input attributes to column names of a DB table
to execute an SQL insert operation.

https://doc.scheer-pas.com/download/attachments/2287279/ClassDiagramWithAttributeMappings.png?version=1&modificationDate=1343893730000&api=v2

	mapAttributes macro

