
BPMN Default Error Handling
The generated model contains prepared procedures for

unhandled signals,
unhandled errors and
retrying the execution of the process, in case the error has been fixed.

The service interface part (e.g.) contains a persistent state class that is BPMNLoanApprovalServices
derived from the abstract definition generated from the BPMN. This class contains overridable operations
that are called by the xUML Runtime on unhandled signals and errors.

You can amend these operations as needed.

Signal Errors
Unhandled signals are caught by the xUML Runtime and the overridable operation onUnhandledSignal
is called. This operation is defined in the derived persistent state class (see).figure above

On this Page:

Signal Errors
Unhandled Errors
Retrying Process Execution

Manual Retry
Automatic Retry

By default, unhandled signals are logged to the . bridgeserver log

You can adapt this activity diagram as needed (e.g. return of an error code to the caller).
Except for the behavior described above, unhandled signals are ignored by the Runtime.

Unhandled Errors
The generated model contains a that invokes the process state machine. This root root state machine
state machine contains a default error state that manages all unhandled errors. It is designed to handle
technical errors during the course of the process.
After the error having been caught and rectified, the process can be continued by sending a retry signal.

https://doc.scheer-pas.com/display/BRIDGE/xUML+Service+Standard+Log

When an error occurs during process execution, the overridable operation defined in onUnhandledError
the derived persistent state class (see) gets executed.figure above

On unhandled errors, the error signal is send to the persistent state object.

You can adapt this error procedure as needed.
On receiving the error signal, activity is executed and, by default, logs the error to the handleErrorSignal
bridgeserver log.

Unhandled errors are caught by the xUML Runtime, no exception is thrown. This results in database
transactions not being rolled back or committed. You need to do this manually in the related error
handler if needed (see below).

You can adapt this activity diagram as well, e.g. to implement retry logic.

Retrying Process Execution
The generated root state machine features automatic and manual retry of process execution.

Manual Retry

If the process is stalled in an error state, you can manually send a retry signal to the process. This can be
done in two ways:

You can trigger a retry signal via the administration UI of the E2E Bridge.

To do this, the retry signal must not have any parameters (as is in the default implementation).
You can implement a service operation that triggers the retry and call this operation e.g. via the
E2E Analyzer. In this case, you may add parameters to the retry signal, e.g. to rectify erroneous
data.

It may be that you need to resolve the root cause of the error first before retrying the process, though.

Automatic Retry

You can configure the root state machine to perform automatic retries after a specified period of time.
This configuration can be done on properties of the persistent state class.

Property Type Description Values

autoRetry Boolean Specify whether automatic retry is activated or not. tr
ue

Automatic retry is
activated.

fa
lse

Automatic retry is
disabled (default).

autoRetryT
ime

String Specify a duration pattern that defines the interval in which
an automatic retry should be performed.

A valid duration pattern,
like described on Time

, e.g. .Durations PT1H

retryAt DateTi
me

This field cannot be set by the modeler but is calculated in
case of retry using . It indicates the point in autoRetryTime
time when the next retry will be performed.

A date/time.

If a process is in error state and the point in time indicated by has been reached, the retry will be retryAt
triggered by the root state machine (see in the root state machine).at(self.retryAt)/auto retry

Keep in mind, that you will not be able to send such a retry signal with parameters via
the administration UI of the E2E Bridge anymore.

https://doc.scheer-pas.com/display/BRIDGE/Time+Durations
https://doc.scheer-pas.com/display/BRIDGE/Time+Durations

As per default, the activity diagram performing the retry contains a logging action for the E2E Process
Dashboard. You can add additional code if necessary.

	BPMN Default Error Handling

