
Using the URL Adapter with the HTTP Protocol

Static GET Request
The following example shows how to access a web page through the . The page URL <<URLAdapter>>
is derived from the alias (details see below).

To make the HTML page readable in a conventional text editor or Web browser we convert it to a string
in the second step using the .transcodeToString() Operation

As the is a <<URLAdapter>>
backend for the Bridge, the
necessary connection information is
done in the component diagram.
The link to this diagram is done with
an alias (which is an artifact with
the stereotype), which <<Alias>>
has to be defined by the developer.
The name of this alias can be
chosen freely.

We suggest to store all aliases in
package .Aliases

The following figure shows the corresponding backend part of the component diagram for the above GET
request:

Figure: Component Diagram for Static GET request

On this Page:

Static GET Request
Static POST Request
Full Dynamic GET
Tagged Values
URL Adapter Response
HTTP Headers

Overwriting
Default Headers

Related Pages:

Setting cURL Options on
the URL Adapter
URL Adapter Reference

This page explains the in Bridge context. If you were looking for the same URL Adapter
information regarding the , refer to in the Designer guide.PAS Designer URL Adapter

https://doc.scheer-pas.com/display/BRIDGE/transcodeToString
https://doc.scheer-pas.com/display/BRIDGE/Setting+cURL+Options+on+the+URL+Adapter
https://doc.scheer-pas.com/display/BRIDGE/Setting+cURL+Options+on+the+URL+Adapter
https://doc.scheer-pas.com/display/BRIDGE/URL
https://doc.scheer-pas.com/display/DESIGNER
https://doc.scheer-pas.com/display/DESIGNER/URL+Adapter

The SOAP service has a dependency to the backend alias. The backend delivers the requested HTML
page. The parameters for the HTTP request are defined as tagged values on the <<URLAlias>>.
In the example above the following GET request will be sent to e.g.: http://www.e2ebridge.com:80
/BridgeFiles/bridging_in_a_nushell.htm

Find below a that can be used with the HTTP protocol.list of all tagged values

Static POST Request
To define a POST request we have the same structure and stereotypes as previously described for the
GET request. There are basically two differences. The protocol defined in the component diagram has to
be "POST" and the post parameters have to be defined in the activity diagram. In some cases the HTTP-
Header has to be adjusted, otherwise the Bridge defaults are used.
The activity diagram below shows the definition of the key/value pairs which can then be sent via POST
to the host defined in the deployment diagram. Because the input of the is a blob that <<URLAdapter>>
must be named "content" this parameter definition has to be made in several steps.

The first step creates the HTTPHeaderField class, which overwrites the content-type default value to
application/x-www-form-urlencoded. With this statement, the post-request will look like it would be sent
via a Web Browser.

The second step creates the post parameter and appends the key-value pairs together with the
manipulated contentType to the headerParameters array.

The third step concats all input values in one string that will be transcoded to a blob in the next action
state. This transcoding is necessary because of the interface of the , which requires <<URLAdapter>>
Blobs as input and output parameter. The action state with the stereotype has no script <<URLAdapter>>
entries but a tagged value with the alias that makes the link to the deployment diagram (like described in
the GET request).

The last step transcodes the base64 output (in this case a .html page) to a string which is sent back to
the client.

All object names except outputString in the last step must be named exactly like in the diagram above
because only these input parameters are valid for the .<<URLAdapter>>

Full Dynamic GET
It is also possible to not have an alias pointing to the host and not to have a component diagram. This is
useful when all parameters are dynamic e.g. all parameter are read from a database. The following
request creates the URL dynamically which means that you do not have an alias pointing to the
component diagram where the parameters are defined.

Figure: Get Request Without Deployment Diagram

However, the absence of a component diagram where the backend is well documented should be the
exception, and only used if all backend parameters are dynamic.

Tagged Values
Find below a list of relevant tagged values, if the URL adapter is used with the HTTP protocol.
Default values used when an option is not explicitly set are written in bold.

Tagged Value Description Values

protocol Transport protocol. http, https

method HTTP method. get, post, put

port Machine port number the service is binding to. This port number can be
given at service level only.

80

path HTTP path for the request.

Advanced

followRedirects Maximum number of redirects to follow. any
integer

options Native cURL options. cURL Options

Authentication

user Username/password.

Proxy

proxyType Type of the proxy. HTTP, SOCKS5

proxyURL URL of the proxy server.

proxyUser Proxy user.

SSL

sslCAInfo File name containing additional certificates for the connection
verification (e.g. additional root CAs).

sslCertificateFile File name containing the client certificate.

sslCertificateTy
pe

Type of the certificate. PEM, DER

https://doc.scheer-pas.com/display/BRIDGE/Setting+cURL+Options+on+the+URL+Adapter

sslPrivateKeyFile File name containing the private key.

sslPrivateKeyPa
ssword

Password for the private key.

sslPrivateKeyTy
pe

Type of the key.

sslVerifyHost Whether to verify the host information form the SSL connection. On Verificatio
n on.

Off Verificatio
n off.

sslVerifyPeer Whether to verify the peer information from the SSL connection. On Verificatio
n on.

Off Verificatio
n off.

URL Adapter Response
The adapter returns the following parameters:

Name Type Direction Restrictions Description

to listed
protocol
only

to
listed
method
only

response Blob out get, post,
put, list,
read

Contains the response content in relation to the
used method.

httpStat
us

Integer out http, https Contains the HTTP status code of the response.

httpHea
derPara
meter

Array
of Head
erField

out http, https

Contains the HTTP headers of the response.

httpHea
derMap

Map of
Entry

out Map of
Entry

Runtime 2020.11 Header information as a map.
The map contains arrays of header value strings
whereas the header name is the key of the map.

Header names are lowercase and treated
case insensitive.
Multiple headers with the same name are
treated as arrays.

Refer to for more HTTP Header Support
information on the standard xUML HTTP
headers.

HTTP Headers
Runtime 2019.9 With xUML service adapter calls, the xUML Runtime adds the following outgoing HTTP
headers containing correlation information to the request:

X-Transaction-Id or (in JMS context)xTransactionId
This header identifies the transaction the call belongs to. You can set the transaction id
manually with . If not set, the Runtime will generate one.setTransactionID
This header will be passed through the callstack to identify all service calls that belong to a
transaction.
X-Request-Id
This header identifies the unique request. The Runtime generates a unique number for each
adapter call.
X-Sender-Host and X-Sender-Service
These headers contain the sender host resp. the sender service. They are set by the Runtime
automatically.

DeprecatedThis attribute is deprecated as
of Runtime 2020.11. Please use httpHead

 (see below) for new erMap
implementations as its implementation
complies to the HTTP specification.

https://doc.scheer-pas.com/display/BRIDGE/HTTP+Header+Support
https://doc.scheer-pas.com/display/BRIDGE/setTransactionID

Transaction id and request id will be on the adapter call. Having this logged to the transaction log
information, you can use this for error analysis or usage metrics.

Overwriting Default Headers

Builder 7.12.0 You can overwrite this default behavior by own header role definitions as Runtime 2020.12
described on . In this context, you can HTTP Header Support > Overwriting the Standard HTTP Headers
also enable automatic header generation for dedicated headers.To do this, specify a list of header
generation rules in tag on the URL alias.requestHttpHeaderRoles

requestHttpHeaderRoles can hold a list of definitions in format . The <http header name>:<role>
listed headers will automatically be generated with the specified role for each adapter call on this alias.
These definitions overwrite the default behavior, and , , X-Transaction-Id X-Request-Id X-Sender-Host
and/or will be substituted by this definition.X-Sender-Service
Refer to for the list of allowed values.URL Adapter Reference

https://doc.scheer-pas.com/display/BRIDGE/Contents+of+the+Transaction+Log
https://doc.scheer-pas.com/display/BRIDGE/HTTP+Header+Support
https://doc.scheer-pas.com/display/BRIDGE/URL

	Using the URL Adapter with the HTTP Protocol

