
SOAP Attachments
SOAP attachments are used to transport data outside of the SOAP envelope. This saves some space
because Base64 encoding can be avoided. Additionally, XML parsers and composers don't have to
serialize large chunks of data. Over the years several approaches have been designed to use MIME
parts to achieve this goal. The Bridge supports two scenarios:

SOAP with Attachments (SwA): This was the first approach. It it is very flexible because linking
the actual SOAP payload with the MIME attachments is basically left to the user. Thus, the
SOAP attachments must be explicitly modeled as input and output objects.<<SOAPAdapter>>
MTOM with : in order to avoid the problems of SwA, XML-binary Optimized Packaging XOP
(XOP) has been invented. This mechanism is basically transparent for the modeler. That is, the
SOAP adapter can map XOP encoded messages directly to the output objects when parsing the
SOAP response. Composing XOP message is not yet supported.

On this Page:

Modeling SOAP
Attachments
SOAP Attachments and
WSDL

Related Pages:

Accessing the SOAP
Headers

http://en.wikipedia.org/wiki/SOAP_with_Attachments
http://en.wikipedia.org/wiki/MTOM
http://en.wikipedia.org/wiki/XML-binary_Optimized_Packaging
https://doc.scheer-pas.com/display/BRIDGE/SOAP+Headers
https://doc.scheer-pas.com/display/BRIDGE/SOAP+Headers

Modeling SOAP Attachments
If the SOAP adapter shall send SOAP attachments, you have first to design a <<SOAPAttachments>>
class containing all MIME parts that you want to attach to the SOAP message. For example, the SendCla

 class contains two attributes and . The first one stands for an imMIMPartsIn ClaimFiles ClaimPhoto
array of MIME parts the latter one for a single MIME part. Attributes of classes <<SOAPAttachments>>
must have either MIME parts or arrays of MIME parts. Typically, you get theses classes when importing
the WSDL files (details see below).

This class can then be used to send the attachments as shown in the following activity diagram. Of
course, receiving attachments works completely analogous. All MIME relevant information such as
Content, Content-Type, or Content-ID must be set explicitly for and . ClaimFiles ClaimPhoto

When receiving SOAP with Attachments, the modeler has to link the non-binary output data with the
MIME parts. Typically fields such as Content-ID or Content-Location are used.

SOAP Attachments and WSDL
WSDL can define a binding to MIME parts. For maximal interoperability we follow the SOAP with

 by Web Service Interoperability Organisation (WS-I). We recommend to look at the Attachment Profile
examples in this document. The following WSDL document is taken from the . It is an example for a there
rpc/literal binding, but the other supported bindings work analogous.

http://www.ws-i.org/profiles/attachmentsprofile-1.0-2004-08-24.html
http://www.ws-i.org/profiles/attachmentsprofile-1.0-2004-08-24.html
http://www.ws-i.org/profiles/attachmentsprofile-1.0-2004-08-24.html

 <?xml version="1.0"?>
<wsdl:definitions xmlns:types="http://example.com/mimetypes"
 xmlns:ref="http://ws-i.org/profiles/basic/1.1/xsd"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soapbind="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 targetNamespace="http://example.com/mimewsdl"
 xmlns:tns="http://example.com/mimewsdl">

 <wsdl:types>
 <xsd:schema targetNamespace="http://example.com/mimetypes"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:import namespace="http://ws-i.org/profiles/basic/1.1/xsd"
/>
 <xsd:complexType name="ClaimDetailType">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="ClaimForm" type="ref:swaRef"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
 </wsdl:types>

 <wsdl:message name="ClaimIn">
 <wsdl:part name="ClaimDetail" type="types:ClaimDetailType"/>
 <wsdl:part name="ClaimPhoto" type="xsd:base64Binary"/>
 </wsdl:message>

 <wsdl:message name="ClaimOut">
 <wsdl:part name="ClaimRefNo" type="xsd:string"/>
 </wsdl:message>

 <wsdl:portType name="ClaimPortType">
 <wsdl:operation name="SendClaim">
 <wsdl:input message="tns:ClaimIn"/>
 <wsdl:output message="tns:ClaimOut"/>
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="ClaimBinding" type="tns:ClaimPortType">
 <soapbind:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"
/>
 <wsdl:operation name="SendClaim">
 <soapbind:operation soapAction="http://example.com/soapaction"
/>
 <wsdl:input>
 <mime:multipartRelated>
 <mime:part>
 <soapbind:body use="literal"
 parts="ClaimDetail"
 namespace="http://example.com
/mimetypes"/>
 </mime:part>
 <mime:part>
 <mime:content part="ClaimPhoto"
 type="image/jpeg"/>
 </mime:part>
 </mime:multipartRelated>
 </wsdl:input>
 <wsdl:output>
 <soapbind:body use="literal"
 namespace="http://example.com/mimetypes"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
</wsdl:definitions>

When importing the above WSDL file, we get (explanation see below)

The WSDL port type (line 34) has the operation (line 35). Its input message ClaimPortType SendClaim
is defined in line 25 containing two parts, and . is just a standard ClaimDetail ClaimPhoto ClaimDetail
SOAP body but is a MIME content because this part is used in the MIME content binding in ClaimPhoto
line 54. Thus, is put into the class . ClaimPhoto <<SOAPAttachmants>> SendCliamMIMEPartsIn
Besides this explicit MIME binding, there is also an implicit reference to a MIME part using the SwA
reference mechanism on line 19. This leads to an additional in the SOAP attachments class, MIMEPart
namely .ClaimForm

The content types of the explicitly given MIME parts are found in the elements (e.g. line mime:content
55). However, more than one content type is possible. All allowed content types are written to the
documentation (see figure above). For SwA references (swaRef) the content type is always . If text/xml
the content type is we use an array of MIME parts. multipart/*

The resulting message may look like (also taken from the the): WS-I profile

 MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
 start="<rootpart@example.com>"
Content-Description: This is the optional message description.

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <rootpart@example.com>

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body xmlns:types="http://example.com/mimetypes">
 <types:SendClaim>
 <ClaimDetail>
 <Name>...</Name>
 <ClaimForm>cid:claimform@example.com</ClaimForm>
 </ClaimDetail>
 </types:SendClaim>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: text/xml
Content-Transfer-Encoding: 8bit
Content-ID: <claimform@example.com>

...claim form referenced by the swaRef...

--MIME_boundary
Content-Type: image/jpeg
Content-Transfer-Encoding: binary
Content-ID: <ClaimPhoto=4d7a5fa2-14af-451c-961b-5c3abf786796@example.com>

...MIME attachment of binary photograph...
--MIME_boundary--

http://www.ws-i.org/profiles/attachmentsprofile-1.0-2004-08-24.html

	SOAP Attachments

