
SQLite Deployment Options

Using SQLite as DBMS there are two different options that may be used:

The ordinary way would be to reference a database file located in the file system.
Alternatively the database file can be added to the project as a resource using the resource
importer.

Holding the database in memory only, without creating a database file, is not possible. The following
paragraphs describe when using these options makes sense and how it is done in the component
diagram.

Using tag on the the following SQLite specific options can be set:options <<SQLAlias>>

 BusyTimeout=<time in milliseconds> . The default is 60000 milliseconds. Used to
avoid some .well known problems
SQLite PRAGMA statements: Used mainly for performance tuning. Details see below.

SQLite Pragma Statements
The is a SQL extension specific to SQLite and used to modify the behavior SQLite PRAGMA statement
of the SQLite database. The syntax is The main use sqlite_pragma_<pragma_name>=<pragma_value>.
case is performance tuning. For example, the following PRAGMA options speed up inserting data (but
also reduce data safety):

sqlite_pragma_synchronous=OFF, sqlite_pragma_temp_store=MEMORY,
sqlite_pragma_journal_mode=TRUNCATE

The tag is set in the component diagram, for example:option

The meaning of these statements is:

sqlite_pragma_synchronous=OFF: Disable wait for writes to complete (may increase
performance by factor 50). Potential of database corruption on power failure.
sqlite_pragma_temp_store=MEMORY: Store temporary tables to memory.
sqlite_pragma_journal_mode=TRUNCATE: The TRUNCATE journaling mode commits
transactions by truncating the rollback journal to zero-length instead of deleting it.

On this Page:

SQLite Pragma Statements
Ordinary SQLite
Deployment Using a
Database File in the File
System
SQLite Deployment Using
a File Resource
Known Problems Using
SQLite

Related Pages:

SQLite PRAGMA statement
sqlite_pragma_syn
chronous=OFF
sqlite_pragma_te
mp_store=MEMO
RY
sqlite_pragma_jou
rnal_mode=TRUN
CATE

xUML Service Settings

This page explains the in Bridge context. If you were looking for the same SQL Adapter
information regarding the , refer to in the Designer guide.PAS Designer SQL Adapter

Example File (Builder projectAdd-ons/SQL):

<your example path>\Add-ons\SQL\uml\sqlQueries.xml

If you want to speed up your persistent state database, please look at option Internal State DB
 on .Synch Persistent State Components

https://doc.scheer-pas.com/display/BRIDGE/SQL+Deployment
http://www.sqlite.org/pragma.html
http://www.sqlite.org/pragma.html#pragma_synchronous
http://www.sqlite.org/pragma.html#pragma_temp_store
http://www.sqlite.org/pragma.html#pragma_journal_mode
http://www.sqlite.org/pragma.html
http://www.sqlite.org/pragma.html#pragma_synchronous
http://www.sqlite.org/pragma.html#pragma_synchronous
http://www.sqlite.org/pragma.html#pragma_temp_store
http://www.sqlite.org/pragma.html#pragma_temp_store
http://www.sqlite.org/pragma.html#pragma_temp_store
http://www.sqlite.org/pragma.html#pragma_journal_mode
http://www.sqlite.org/pragma.html#pragma_journal_mode
http://www.sqlite.org/pragma.html#pragma_journal_mode
https://doc.scheer-pas.com/display/BRIDGE/xUML+Service+Settings
https://doc.scheer-pas.com/display/DESIGNER
https://doc.scheer-pas.com/display/DESIGNER/SQL+Adapter
https://doc.scheer-pas.com/download/attachments/2286600/SQL.zip?version=3&modificationDate=1627545839000&api=v2
https://doc.scheer-pas.com/display/BRIDGE/Persistent+State+Components

Ordinary SQLite Deployment Using a Database File
in the File System
The ordinary way of using an SQLite database is the specification of a database file located in the file
system (e.g.). The component diagram for the file system deployment option as C:\temp\db.sqlite
follows:

Figure: SQLite Deployment Using a Database File in the File System

SQLite Deployment Using a File Resource
The SQlite database file (e.g.) can be imported using the resource importer. The import db.sqlite
procedure is described in the E2E Builder User Guide, you can select the option "binary file" during the
import.

Using this special way, the database itself will be included in the repository during deployment. This has
the following implications:

The structure and initial data of the database need to be clear and set to an initial state before
importing the database file as a resource.
The idea of a resource is providing certain data to a model or service, in contrast to storing data
from a model or service. Therefore, during each deployment process, the * file is added .sqlite
to the repository and deployed to the xUML Runtime in its initial, original state (which it had
when being imported). This means: During service execution, the database can be read and
written to, however any changes will be overwritten during the next deployment procedure. This
might be ok, if you use the database for management of temporary data in a service context,
however it might not be suitable if the data needs to be persisted longer.
Within the component diagram, the database can be referenced using a relative path (e.g. .

) instead of an absolute path (e.g.). \repository\resources\db.sqlite C:\temp\db.sqlite
Therefore, no settings need to be adapted when deploying the service to different machines /
environments.
Once deployed, you can replace the resource changing the resource path in the SQL Adapter

 settings of the xUML service. See for more information on Connection xUML Service Settings
changing the settings of a service.

The component diagram for the resource deployment option looks as follows.

Figure: SQLite Deployment Using a File Resource

https://doc.scheer-pas.com/display/BRIDGE/xUML+Service+Settings

Known Problems Using SQLite
Using the SQL Adapter with SQLite database, you may get the following error:

[SQLSM][6][Error Message: 5 "database is locked". SQL Statement: ...]

This occurs, if multiple threads or processes want to read/write the SQLite database simultaneously. In
case of concurrent writes, one write will fail. The xUML Runtime will retry to execute the write for 60
seconds. After the time-out, the message above is written to the bridgeserver log.

There are two possible approaches to solve this conflict (they may also be combined):

Add value to the tag of BusyTimeout=<time in milliseconds> options the <<SQLAlias>>
. Default is 60000 milliseconds - increase this value.
Re-model the service to have short database transactions (including select) and add explicit
commits to unlock the database frequently.

	SQLite Deployment Options

