
Java Implementation for Java Callback
In order to invoke an activity diagram from a Java object, the Java implementation has to:

implement the Java interface resp. BridgeJavaService BridgeJavaServiceStartStopInterface
provide an interface to be implemented by the Bridge

The interface needs to be implemented within the Java application.BridgeJavaService

public class HelloWorldService implements
BridgeJavaService<HelloWorldCallback>, BridgeJavaServiceStartStopInterface
{

 public void initialize(final HelloWorldCallback callback) {
 // initialize service, should not access other components or may
cause race conditions
 }

 public void start() {
 // start serving requests. From this point on all components can
be freely accessed
 }

 public void shutDown() {
 // stop accepting new requests
 }

 public void stop() {
 // wait for active requests to finish and do some necessary cleanup
 }

 }

The interface contains the following methods:

Method Description

initialize Is invoked when the Bridge service is started. should not access other initialize
components or this may cause race conditions.

start Runtime 2017.4 Is invoked, when all service components are initialized.Builder 6.0.22

shutdown Runtime 2017.4 Are invoked, when all service components are shut down.Builder 6.0.22

stop

In the example, the Java class implements the interface HelloWorldJavaService BridgeJavaService
and its operations.

Furthermore, within the Java application, an interface needs to be defined, which inherits from the
generic interface . In the example, the Java Interface is BridgeJavaCallback HelloWorldCallback
defined. This interface and its operations will later on be implemented by a UML class within the E2E
BRIDGE, as defined in the following section .xUML Service Model for Java Callback

public interface HelloWorldCallback extends BridgeJavaCallback {

 public void sendText(String text);
 }

After considering the above preconditions in the Java code, you can create the JAR-file(s) which will be
imported into the E2E Bridge. The import is described on Importing Java™ Classes and Properties

.Resource Files

On this Page:

Migration Notes

Related Pages:

xUML Service Model for
Java Callback
Importing Java™ Classes
and Properties Resource
Files

The JAR-files for the illustrated example are located in the directory of the E2E Builder jarfiles
project . The JAR files also contain the Java sources, which show how to write importable Add-ons
classes.

https://doc.scheer-pas.com/display/BRIDGE/xUML+Service+Model+for+Java+Callback
https://doc.scheer-pas.com/display/BRIDGE/Importing+Java+Classes+and+Properties+Resource+Files
https://doc.scheer-pas.com/display/BRIDGE/Importing+Java+Classes+and+Properties+Resource+Files
https://doc.scheer-pas.com/display/BRIDGE/xUML+Service+Model+for+Java+Callback
https://doc.scheer-pas.com/display/BRIDGE/xUML+Service+Model+for+Java+Callback
https://doc.scheer-pas.com/display/BRIDGE/Importing+Java+Classes+and+Properties+Resource+Files
https://doc.scheer-pas.com/display/BRIDGE/Importing+Java+Classes+and+Properties+Resource+Files
https://doc.scheer-pas.com/display/BRIDGE/Importing+Java+Classes+and+Properties+Resource+Files

Migration Notes
Methods and are new with and . If you have implemented this start stop Runtime 2017.4 Builder 6.0.22
class before, please note the following:

If your class already contains start and/or stop methods but does not implement BridgeJavaSer
, the methods .viceStartStopInterface will not be executed

stop needs . Runtimes before 2017.4 will silently disregard , will be Runtime 2017.4 stop start
executed though.

	Java Implementation for Java Callback

