
RESTful HTTP Service
Bridge 6.0.55.2Runtime 2016.3Builder 6.0.17.2This page describes how to build RESTful HTTP service
with the E2E Bridge. For more information on the concepts of REST refer to the Wikipedia pages of Repr

.esentational State Transfer

Specifying the Resource Path
Each contains the following tagged values:<<E2EHTTPPortType>>

Tagged Value Description

path The tagged value path is used to define the service URL:
 url = http://<hostname>:<port>/<path>

In the example, the path is . That is, the first part of the URL becomes /supportcases http://localhost:
. (Whereas we assumed that the service runs on localhost.)12007/supportcases

The rest of the service URL derives from the within the .<<RESTOperation>> <<E2EHTTPPortType>>

Figure: <<RESTOperation>> getSupportCase

On the REST operation, you can specify a parameter to match the REST resource path with that path
specific operation.

Tagged
Value

Description Values

path Contains a path pattern. The overall path the REST operation is given by
the path of the HTTP port plus this path.
The path pattern may consist of literals (such as /test) and parameters
(such as /:a).

 Example:
/test/:a/:b

On this Page:

Specifying the Resource
Path
Accessing Path
Parameters in Activity
Diagrams
Accessing the Service via
cURL Calls

POST Data
GET Data
PUT Data

Related Pages:

Plain HTTP Service
Representational State
Transfer
REST Service

As of Bridge version 6.0.55.2 implementation of native REST services is available and implementing
RESTful HTTP is deprecated. Please refer to for information on the new approach.REST Service

Example File (Builder project Basic Modeling/Frontend):

<your example path>\Basic Modeling\Frontend\uml\simpleRESTSupportManager.
xml

Be aware that the modeler is responsible to choose a value being unique within its xUML service.

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
https://doc.scheer-pas.com/display/BRIDGE/Plain+HTTP+Service
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
https://doc.scheer-pas.com/display/BRIDGE/REST+Service
https://doc.scheer-pas.com/display/BRIDGE/REST+Service
https://doc.scheer-pas.com/download/attachments/2286600/Frontend.zip?version=3&modificationDate=1587971363000&api=v2

In the example, the complete path to a specific support case is /<idhttp://localhost:12007/supportcases
 and that link will call the operation . (Whereas we assumed that of the support case> getSupportCase

the service runs on localhost.)

Accessing Path Parameters in Activity Diagrams
As mentioned in , the path parameters are going into the REST operation via a parameter HTTP Service p

, which is of type . You can get the parameter values using the opathParameters Map getMapValue()
eration, e.g.

set id = pathParameters.getMapValue("id");

Accessing the Service via cURL Calls
You can test a RESTful HTTP service via cURL calls. The example project Basic Modeling/Frontend
contains test cURL calls as batch files in folder . You only have to provide the host the cURL_test_calls
example service is running on. Just make sure, that you have access to a valid cURL installation from
your command shell. cURL is also delivered with the E2E Bridge and you can find a valid installation in
your MagicDraw installation folder in .plugins\ch.e2e.builder.plugin.magicdraw\bin

POST Data

For example, the batch script will invoke the following cURL call:create_support_case.bat localhost -v

curl -X POST --upload "post_data/post_support_request_12345.json" -G
"http://localhost:12007/supportcases" -v

The cURL needs a JSON input file containing the data. Option makes cURL logging POST POST -v
more information on the HTTP input and output parameters.

This request results in the following answer:

* About to connect() to localhost port 12007 (#0)
* Trying 127.0.0.1...
* connected
* Connected to localhost (127.0.0.1) port 12007 (#0)
> POST /supportcases HTTP/1.1
> User-Agent: curl/7.27.0
> Host: localhost:12007
> Accept: */*
> Content-Length: 121
> Expect: 100-continue
>
< HTTP/1.1 100 CONTINUE
* We are completely uploaded and fine
* HTTP 1.0, assume close after body
< HTTP/1.0 201 Created
< Server: E2E-Bridge/2013.2
< Pragma: no-cache
< Location: http://localhost:12007/supportcases
/00000002e99f3e0600000b1400001238960a4878
< Content-Length: 312
< Cache-control: no-cache
<
{"self":"http:\/\/localhost:12007\/supportcases\
/00000002e99f3e0600000b1400001238960a4878",
 "id":"00000002e99f3e0600000b1400001238960a4878",
 "customerID":"12345",
 "customerName":"Wishes unltd",
 "date":"2013-10-24T08:40:29.446264Z",
 "shortDescription":"This is a test support case.",
 "status":"in progress"}* Closing connection #0

https://doc.scheer-pas.com/display/BRIDGE/HTTP+Service#HTTPService-HTTPPortTypeOperationParameters
https://doc.scheer-pas.com/display/BRIDGE/getMapValue

GET Data

For example, the batch script get_support_case.bat localhost 00000002e99f3e0600000b14000012389
 will retrieve the newly created support case as follows:60a4878 -v

curl -X GET -G "http://localhost:12007/supportcases
/00000002e99f3e0600000b1400001238960a4878" -v

Option makes cURL logging more information on the HTTP input and output parameters. -v

This request results in the following answer:

* About to connect() to localhost port 12007 (#0)
* Trying 127.0.0.1...
* connected
* Connected to localhost (127.0.0.1) port 12007 (#0)
> GET /supportcases/00000002e99f3e0600000b1400001238960a4878 HTTP/1.1
> User-Agent: curl/7.27.0
> Host: localhost:12007
> Accept: */*
>
* HTTP 1.0, assume close after body
< HTTP/1.0 200 OK
< Server: E2E-Bridge/2013.2
< Pragma: no-cache
< Content-Length: 312
< Cache-control: no-cache
<
{"self":"http:\/\/localhost:12007\/supportcases\
/00000002e99f3e0600000b1400001238960a4878",
 "id":"00000002e99f3e0600000b1400001238960a4878",
 "customerID":"12345",
 "customerName":"Wishes unltd",
 "date":"2013-10-24T08:40:29.446264Z",
 "shortDescription":"This is a test support case.",
 "status":"in progress"}* Closing connection #0

PUT Data

For example, the batch script resolve_support_case.bat localhost 00000002e99f3e0600000b1400001
 will update the corresponding support case as follows:238960a4878 -v

curl -X PUT -G "http://localhost:12007/supportcases
/00000002e99f3e0600000b1400001238960a4878/resolve" -v

Option makes cURL logging more information on the HTTP input and output parameters. -v

This request results in the following answer:

* About to connect() to localhost port 12007 (#0)
* Trying 127.0.0.1...
* connected
* Connected to localhost (127.0.0.1) port 12007 (#0)
> PUT /supportcases/00000002e99f3e0600000b1400001238960a4878/resolve HTTP
/1.1
> User-Agent: curl/7.27.0
> Host: localhost:12007
> Accept: */*
>
* HTTP 1.0, assume close after body
< HTTP/1.0 200 OK
< Server: E2E-Bridge/2013.2
< Pragma: no-cache
< Content-Length: 25
< Cache-control: no-cache
<
Support case is resolved.* Closing connection #0

	RESTful HTTP Service

